岩石偏心圆孔单裂纹平台圆盘的动态裂纹扩展与止裂

李炼 罗林 吴礼舟 王启智

李炼, 罗林, 吴礼舟, 王启智. 岩石偏心圆孔单裂纹平台圆盘的动态裂纹扩展与止裂[J]. 爆炸与冲击, 2018, 38(6): 1218-1230. doi: 10.11883/bzycj-2017-0122
引用本文: 李炼, 罗林, 吴礼舟, 王启智. 岩石偏心圆孔单裂纹平台圆盘的动态裂纹扩展与止裂[J]. 爆炸与冲击, 2018, 38(6): 1218-1230. doi: 10.11883/bzycj-2017-0122
LI Lian, LUO Lin, WU Lizhou, WANG Qizhi. Dynamic crack propagation and arrest investigated with a cracked eccentrically-holed flattened disc of rock[J]. Explosion And Shock Waves, 2018, 38(6): 1218-1230. doi: 10.11883/bzycj-2017-0122
Citation: LI Lian, LUO Lin, WU Lizhou, WANG Qizhi. Dynamic crack propagation and arrest investigated with a cracked eccentrically-holed flattened disc of rock[J]. Explosion And Shock Waves, 2018, 38(6): 1218-1230. doi: 10.11883/bzycj-2017-0122

岩石偏心圆孔单裂纹平台圆盘的动态裂纹扩展与止裂

doi: 10.11883/bzycj-2017-0122
基金项目: 

国家自然科学基金项目 41672282

; 四川大学高等学校博士学科点专项科研基金项目 20130181130013

; 成都理工大学地质灾害防治与地质环境保护国家重点实验室开放基金项目 SKLG2016K015

; 重庆交通大学山区桥梁与隧道工程国家重点实验室开放基金项目 CQSLBF-Z16-1

详细信息
    作者简介:

    李炼(1988-), 女, 硕士, 助理工程师

    通讯作者:

    王启智, qzwang2004@163

  • 中图分类号: O348.3;TU435

Dynamic crack propagation and arrest investigated with a cracked eccentrically-holed flattened disc of rock

  • 摘要: 针对平台圆环构型的优点, 提出偏心圆孔单裂纹平台圆盘(cracked eccentrically holed flattened disc, CEHFD), 该试样具有更长的断裂路径。利用霍普金森压杆加载系统, 径向冲击CEHFD试样, 完成Ⅰ型动态断裂实验。砂岩试样表面粘贴应变片和裂纹扩展计, 用于监测裂纹动态起裂、扩展和止裂的全过程。实验表明, 在整个断裂过程中, 裂纹非匀速扩展, 裂纹扩展速度在裂纹起裂后加速上升, 在裂纹止裂前有明显的减速, 与地震时断层的动态破裂全过程完全吻合。采用实验-数值-解析法得到动态应力强度因子, 其时间历程呈现先增大后减小的趋势。根据断裂过程不同时刻, 得到相应的动态起裂韧度、扩展韧度及止裂韧度。在动态断裂全过程中, 动态扩展韧度为速度的函数, 变化趋势与速度一致, 随着时间先增大后减小; 动态起裂韧度大于动态止裂韧度, 止裂韧度随着裂纹最大扩展速度的增大而降低, 并且有较大的离散性。
  • 图  1  CEHFD试样示意图

    Figure  1.  Sketch of CEHFD specimen

    图  2  预制裂纹试样

    Figure  2.  Precracked specimens

    图  3  SHPB实验装置和CEHFD试样

    Figure  3.  SHPB setup and CEHFD specimen

    图  4  应变片粘贴位置及构造图

    Figure  4.  Position and structure of CPG and SG

    图  5  CEHFD-2试样入射杆信号和CPG信号

    Figure  5.  The voltage signal of incident bar and CPG in specimen of CEHFD-2

    图  6  CEHFD-3试样入射杆信号和CPG信号

    Figure  6.  The voltage signal of incident bar and CPG in specimen of CEHFD-3

    图  7  CEHFD-3试样上SG和CPG信号

    Figure  7.  The voltage signals of SG and CPG in specimen of CEHFD-3

    图  8  试样应变率时程曲线

    Figure  8.  History curves of strain rate for specimens

    图  9  阶段ⅠCPG测得的电压信号

    Figure  9.  Voltage signal measured by CPG in stage Ⅰ

    图  10  阶段ⅡCPG测得的电压信号

    Figure  10.  Voltage signal measured by CPG in stage Ⅱ

    图  11  阶段Ⅰ裂尖位置时程曲线

    Figure  11.  History of crack tip position in stage Ⅰ

    图  12  阶段Ⅰ裂纹扩展速度时程曲线

    Figure  12.  History of crack propagation velocity in stage Ⅰ

    图  13  CEHFD-3试样的动态加载载荷

    Figure  13.  Dynamic loading on specimen of CEHFD-3

    图  14  CEHFD的1/2有限元模型

    Figure  14.  FEM model of CEHFD

    图  15  CEHFD-3试样的动态应力强度因子

    Figure  15.  History curve of dynamic stress intersity factor of CEHFD-3 specimen

    图  16  试样动态止裂过程

    Figure  16.  Dynamic crack arrest process of specimen

    表  1  动态实验数据

    Table  1.   Dynamic experimental data

    试样编号 t0/μs t4/μs tf/μs ta/μs tf/μs (tf-tf)/μs
    CEHFD-1 840.9 916.9 76.0 253.6 1 781.8 1 705.8
    CEHFD-2 846.4 928.2 81.8
    CEHFD-3 846.3 929.1 82.8 309.8 1 797.0 1 714.2
    CEHFD-4 838.0 923.7 85.7 327.5 1 804.2 1 718.5
    CEHFD-5 844.1 916.9 72.8 282.8 1 793.0 1 720.2
    CEHFD-6 844.0 923.5 79.5 252.6 1 774.6 1 695.1
    下载: 导出CSV

    表  2  砂岩的动态起裂和止裂断裂韧度

    Table  2.   Dynamic initiation and propagation toughness of sandstone

    试样编号 ${\dot K}$/(GPa·m1/2·s-1) KⅠC(d)/(MPa·m1/2) vmax/cR KⅠC(a)/(MPa·m1/2)
    CEHFD-1 27.4 2.08 0.44 0.72
    CEHFD-2 36.1 2.95 0.51
    CEHFD-3 32.0 2.65 0.47 0.69
    CEHFD-4 41.5 3.56 0.35 1.52
    CEHFD-5 24.3 1.77 0.40 1.07
    CEHFD-6 26.9 2.14 0.51 0.61
    下载: 导出CSV
  • [1] BRIAN C, YANG Qingda.In quest of virtual test for structural composite[J].Science, 2006, 314(5802):1102-1107.DOI: 10.1126/science.1131624.
    [2] 余寿文.断裂力学的历史发展和思考[J].力学与实践, 2015, 39(3):390-394.DOI: 10.6052/1000-0879-15-164.

    YU Shouwen.The historical development of fracture mechanics and rethinking[J].Mechanics in Engineering, 2015, 39(3):390-394.DOI: 10.6052/1000-0879-15-164.
    [3] DAS S.Dynamic fracture mechanics in the study of the earthquake rupturing process:Theory and observation[J].Journal of the Mechanics and Physics of Solids, 2003, 51(11/12):1939-1955.DOI: 10.1016/j.jmps.2003.09.025.
    [4] DAS S.The need to study speed[J].Science, 2007, 317(5840):905-906.DOI: 10.1126/science.1142143.
    [5] ROBINSON D P, BROUGH C, DAS S.The Mw 7.8, 2001 Kunlunshan earthquake:Extreme rupture speed variability and effect of fault geometry[J].Journal of Geophysical Research, 2006(111):B08303.DOI: 10.1029/2005JB004137.
    [6] KALTHOFF J F, BEINERT J, WINCKLER S.Experimental analysis of dynamic effects in different crack arrest test specimens[J].ASTM STP 1980, 711:109-127.DOI: 10.1520/STP27443S.
    [7] KOBAYASHI T, DALLY J W.In fast fracture and crack arrest[J].ASTM STP 1977, 627:257-273. doi: 10.1016-0013-7944(86)90191-8/
    [8] SCHARDIN H.Velocity effects in fracture[M].1959: 297-330.
    [9] RAVI-CHANDAR K, KNAUSS W G.An experimental investigation into dynamic fracture:Ⅰ.Crack initiation and arrest[J].International Journal of Fracture, 1984, 25(4):247-262. doi: 10.1007/BF00963460
    [10] FREUND L B.Dynamic fracture mechanics[M].Cambridge:Cambridge University Press, 1990.
    [11] DALLY J W.Dynamic photo elastic studies of fracture[J].Experimental Mechanics, 1979, 19(10), 349-361. doi: 10.1007/BF02324250
    [12] KALTHOFF J F.On some current problems in experimental fracture dynamics[C]//Workshop on Dynamic Fracture.Pasadena: California Institute of Technology, 1983: 11-35.
    [13] RAVI-CHANDAR K, KNAUSS W G.An experimental investigation into dynamic fracture:Ⅲ.On steady state crack propagation and crack branching[J].International Journal of Fracture, 1984, 26(2):141-154.DOI: 10.1007/BF01157550.
    [14] FINEBERG J, BOUCHBINDER E.Recent developments in dynamic fracture:some perspectives[J].International Journal of Fracture, 2015, 196(1):33-57.DOI: 10.1007/s10704-015-0038-x.
    [15] ARAKAWA K, MADA T.Unsteady dynamic crack propagation in a brittle polymer[J].Experimental Mechanics, 2007, 47(5):609-615.DOI: 10.1007/s11340-006-9020-x.
    [16] SINGH R P, KAVATURU M, SHUKLA A.Initiation, propagation and arrest of an interface crack subjected to controlled stress wave loading[J].International Journal of Fracture, 1997, 83(3):291-304. doi: 10.1023/A:1007358901588
    [17] 王自强, 陈少华.高等断裂力学[M].北京:科学出版社, 2009.
    [18] LEVENT T, CIGDEM K.Effects of geometric factors on mode Ⅰ fracture toughness for modified ring tests[J].International Journal of Rock Mechanics and Mining Sciences, 2012, 51(1):149-161. https://www.deepdyve.com/lp/elsevier/effects-of-geometric-factors-on-mode-i-fracture-toughness-for-modified-xPK0koo9Zh
    [19] IUNG T, PINEAU A.Dynamic crack propagation and crack arrest investigated with a new specimen geometry:Part Ⅰ:Experimental and numerical calculations[J].Fatigue and Fracture of Engineering Materials and Structures, 1996, 19(11):1357-1367. doi: 10.1111/ffe.1996.19.issue-11
    [20] 杨井瑞, 张财贵, 周妍, 等.用CSTBD试样确定砂岩的动态起裂和扩展韧度[J].爆炸与冲击, 2014, 34(3):264-271. http://www.bzycj.cn/CN/abstract/abstract8838.shtml

    YANG Jingrui, ZHANG Caigui, ZHOU Yan, et al.Determination of dynamic initiation toughness and propagation toughness of sandstone using CSTBD specimens[J].Explosion and Shock Waves, 2014, 34(3):264-271. http://www.bzycj.cn/CN/abstract/abstract8838.shtml
    [21] 张盛, 王启智, 谢和平.岩石动态断裂韧度的尺寸效应[J].爆炸与冲击, 2008, 28(6):544-551.DOI: 10.11883/1001-1455(2008)06-0544-08.

    ZHANG Sheng, WANG Qizhi, XIE Heping.Size effect of rock dynamic fracture toughness[J].Explosion and Shock Waves, 2008, 28(6):544-551.DOI: 10.11883/1001-1455(2008)06-0544-08.
    [22] 周妍, 张财贵, 杨井瑞, 等.圆孔内单边(或双边)裂纹平台巴西圆盘应力强度因子的全面标定[J].应用数学和力学, 2015, 36(1):16-30. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201501002

    ZHOU Yan, ZHANG Caigui, YANG Jingrui, et al.Comprehensive calibration of stress intensity factor for flattened Brazilian disc with holed inner single or double cracks[J].Applied Mathematics and Mechanics, 2015, 36(1):16-30. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201501002
    [23] 周妍, 张财贵, 王启智.用圆孔内单边裂纹平台巴西圆盘和实验-数值-解析法确定砂岩的动态起裂和扩展韧度[J].振动与冲击, 2017, 36(5):37-47. http://d.old.wanfangdata.com.cn/Periodical/zdycj201705007

    ZHOU Yan, ZHANG Caigui, WANG Qizhi.Determination of dynamic initiation toughness and dynamic propagation toughness of sandstone[J].Journal of Vibration and Shock, 2017, 36(5):37-47. http://d.old.wanfangdata.com.cn/Periodical/zdycj201705007
    [24] 李炼, 杨丽萍, 曹富, 等.冲击加载下的砂岩动态断裂全过程的实验和分析[J].煤炭学报, 2016, 41(8):1912-1922. http://d.old.wanfangdata.com.cn/Periodical/mtxb201608006

    LI Lian, YANG Liping, CAO Fu, et al.Complete dynamic fracture process of sandstone under impact loading:Experiment and analysis[J].Journal of China Coal Society, 2016, 41(8):1912-1922. http://d.old.wanfangdata.com.cn/Periodical/mtxb201608006
    [25] 唐志平, 王礼立.SHPB实验的电脑化实验处理系统[J].爆炸与冲击, 1986, 6(4):320-327. http://www.bzycj.cn/CN/abstract/abstract11099.shtml

    TANG Zhiping, WANG Lili.A computerized system of data processing used in SHPB experiments[J].Explosion and Shock Waves, 1986, 6(4):320-327. http://www.bzycj.cn/CN/abstract/abstract11099.shtml
    [26] 李夕兵, 古德生, 赖海辉.冲击荷载下岩石动态应力-应变全图测试中的合理加载波形[J].爆炸与冲击, 1993, 13(2):125-130. http://www.bzycj.cn/CN/abstract/abstract10667.shtml

    LI Xibing, GU Desheng, LAI Haihui.On the reasonable loading stress waveforms determined by dynamic stress-strain curves of rocks by SHPB[J].Explosion and Shock Waves, 1993, 13(2):125-130. http://www.bzycj.cn/CN/abstract/abstract10667.shtml
    [27] GUO W G, LI Y L, LIU Y Y.Analytical and experimental determination of dynamic impact stress intensity factor for 40Cr steel[J].Theoretical and Applied Fracture Mechanics, 1997, 26(1):29-34. doi: 10.1016/S0167-8442(96)00031-6
    [28] WEISBROD G, RITTLE D.A method for dynamic fracture toughness determination using short beams[J].International Journal of Fracture, 2000, 104(1):89-103. doi: 10.1023/A:1007673528573
    [29] WANG Q Z, YANG J R, ZHANG C G, et al.Determination of dynamic crack initiation and propagation toughness of a rock using a hybrid experimental-numerical approach[J].Journal of Engineering Mechanics, 2016, 142(12):04016097.DOI: 10.1061/(ASCE)EM.1943-7889.0001155.
    [30] 杨井瑞, 张财贵, 周妍, 等.用SCDC试样测试岩石动态断裂韧度的新方法[J].岩石力学与工程学报, 2015, 34(2):279-292. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201502007

    YANG Jingrui, ZHANG Caigui, ZHOU Yan, et al.A new method for determining dynamic fracture toughness of rock using SCDC specimens[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):279-292. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201502007
    [31] CHEN Y M, WILKINS M L.Stress analysis of problems with a three-dimensional, time-dependent computer program[J].International Journal of Fracture, 1976, 12(4):607-617.DOI: 10.1007/BF00034646.
    [32] CHEN L S, KYANG J H.A modified linear extrapolation formula for determination of stress intensity factors[J].International Journal of Fracture, 1992, 54(1):R3-R8.DOI: 10.1007/BF00040859.
    [33] RAVI-CHANDAR K K.Dynamic fracture[M].Elsevier, 2004.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  4762
  • HTML全文浏览量:  1580
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-14
  • 修回日期:  2017-09-16
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回