细观混凝土靶抗侵彻数值模拟及侵彻深度模型

吴成 沈晓军 王晓鸣 姚文进

吴成, 沈晓军, 王晓鸣, 姚文进. 细观混凝土靶抗侵彻数值模拟及侵彻深度模型[J]. 爆炸与冲击, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123
引用本文: 吴成, 沈晓军, 王晓鸣, 姚文进. 细观混凝土靶抗侵彻数值模拟及侵彻深度模型[J]. 爆炸与冲击, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123
WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123
Citation: WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123

细观混凝土靶抗侵彻数值模拟及侵彻深度模型

doi: 10.11883/bzycj-2017-0123
基金项目: 

国家自然科学基金项目 11602111

详细信息
    作者简介:

    吴成(1989-), 男, 博士研究生, qqqwucheng@163.com

  • 中图分类号: O385

Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target

  • 摘要: 为研究细观混凝土靶的侵彻规律,采用LS-DYNA软件对刚性弹丸侵彻两相混凝土靶进行了数值模拟。结果表明,影响靶板抗侵彻能力的主要因素是砂浆种类、粗骨料种类和粗骨料体积分数;混凝土靶中的砂浆与对应的砂浆靶中的砂浆产生的阻力接近;混凝土靶中的粗骨料产生的阻力远低于对应的岩石靶中的岩石。通过扩展Forrestal阻力方程,建立了细观混凝土侵彻深度模型,模型和数值模拟一致性很好。
  • 图  1  三维混凝土靶网格的截面

    Figure  1.  Cross section of 3D concrete target grid

    图  2  最大粗骨料尺寸da、撞击位置、粗骨料形状、粗骨料级配方式、粗骨料体积分数φ对侵彻深度P的影响

    Figure  2.  Influence of maximum coarse aggregate size da, impact position, coarse aggregate shape, coarse aggregate gradation, coarse aggregate volume fraction φ on penetration depth P

    图  3  砂浆靶、混凝土靶和岩石靶的细观有限元网格

    Figure  3.  Mesoscopic finite element grid of mortar target, concrete target and rock target

    图  4  混凝土靶和砂浆靶中相同部分砂浆对弹丸施加的轴向阻力对比

    Figure  4.  Comparison of the axial resistance to projectile from the mortar in the same part of concrete target and mortar target

    图  5  混凝土靶和岩石靶中相同部分岩石对弹丸施加的轴向阻力对比

    Figure  5.  Comparison of the axial resistance to projectile from the rock in the same part of concrete target and rock target

    图  6  体应变、网格截面及等效剪应变

    Figure  6.  Volumetric strain, cross section of grid and effective shear strain

    图  7  不同入射速度v0和不同粗骨料体积分数φ下侵彻深度的理论和数值模拟对比

    Figure  7.  Comparison of penetration depth between theory and simulation at different impact velocity v0 and different coarse aggregate volume fraction φ

    表  1  Salem石灰岩HJC本构参数

    Table  1.   HJC model parameters of Salem limestone

    ρ0/(g·cm-3) G/GPa A B C N fc/MPa T/MPa $ {\dot \varepsilon _0} $/s-1 Ef, min
    2.3 10 0.55 1.23 0.009 7 0.89 60 4 1 0.01
    Smax Pcrush/MPa μcrush Plock/GPa μlock D1 D2 K1/GPa K2/GPa K3/GPa
    20 20 0.001 25 2 0.174 0.04 1.0 39 -223 550
    下载: 导出CSV

    表  2  S型砂浆HJC本构参数

    Table  2.   HJC model parameters of type S mortar

    ρ0/(g·cm-3) G/MPa A B C N fc/MPa T/MPa $ {\dot \varepsilon _0} $/s-1 Ef, min
    1.604 1 150 0.66 1.335 0.001 8 0.845 12.3 1.8 1 0.01
    Smax Pcrush/MPa μcrush Plock/MPa μlock D1 D2 K1/MPa K2/GPa K3/GPa
    80.24 13.8 0.007 5 109.6 0.15 0.006 629 1.0 300 -2 19
    下载: 导出CSV

    表  3  侵彻数值模拟方案及侵彻深度P

    Table  3.   Numerical simulation scheme and penetration depth P

    方案 v0/
    (m·s-1)
    粗骨料形状 da/mm 粗骨料级配 粗骨料方向 φ/% 附加说明 P/cm
    1 500 球体 ∅25 Fuller连续级配 - 33 - 73.9
    2 500 球体 ∅40 Fuller连续级配 - 33 - 74.6
    3 500 球体 ∅60 Fuller连续级配 - 33 撞击位置1
    (轴线)
    73.5
    4 500 球体 ∅60 Fuller连续级配 - 33 撞击位置2
    (横向偏移2 cm)
    73.3
    5 500 球体 ∅60 Fuller连续级配 - 33 撞击位置3
    (横向偏移-2 cm)
    73.7
    6 500 长方体 30×30×10 3种粗骨料尺寸 最短边与弹轴平行 33 - 69.2
    7 500 长方体 30×30×10 3种粗骨料尺寸 最短边与弹轴垂直 33 - 75.8
    8 500 长方体 30×20×10 3种粗骨料尺寸 最短边与弹轴平行 33 - 70.8
    9 500 长方体 30×20×10 3种粗骨料尺寸 最短边与弹轴垂直 33 - 75.7
    10 500 长方体 30×10×10 3种粗骨料尺寸 最短边与弹轴平行 33 - 69.9
    11 500 长方体 30×10×10 3种粗骨料尺寸 最短边与弹轴垂直 33 - 75.8
    12 500 球体 ∅40 Fuller连续级配 - 20 - 85.0
    13 500 球体 ∅40 粗骨料尺寸相同 - 20 - 88.3
    14 500 球体 ∅40 Fuller连续级配 - 50 - 66.1
    15 500 - - - - 100 靶板为岩石 27.0
    16 500 - - - - 0 靶板为砂浆 97.6
    17 800 球体 ∅40 Fuller连续级配 - 33 - 153.3
    18 300 球体 ∅40 Fuller连续级配 - 33 - 33.8
    下载: 导出CSV
  • [1] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets[J]. International Journal of Impact Engineering, 2005, 32(1):224-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025583222
    [2] 程怡豪, 王明洋, 施存程, 等.大范围着速下混凝土靶抗冲击试验研究综述[J].浙江大学学报(工学版), 2015(4):616-625. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201504002

    CHENG Yihao, WANG Mingyang, SHI Cuncheng, et al. Review of experimental investigation of concrete target to resist missile impact in large velocity range[J]. Journal of Zhejiang University(Engineering Science), 2015(4):616-625. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201504002
    [3] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226220945/
    [4] 水利水电科学研究院结构材料研究所.大体积混凝土[M].北京:水利电力出版社, 1990:76-79.
    [5] DANCYGIER A N, YANKELEVSKY D Z, JAEGERMANN C. Response of high performance concrete plates to impact of non-deforming projectiles[J]. International Journal of Impact Engineering, 2007, 34(11):1768-1779. doi: 10.1016/j.ijimpeng.2006.09.094
    [6] WANG S, LE H T N, POH L H, et al. Resistance of high-performance fiber-reinforced cement composites against high-velocity projectile impact[J]. International Journal of Impact Engineering, 2016, 95:89-104. doi: 10.1016/j.ijimpeng.2016.04.013
    [7] 张伟, 慕忠成, 肖新科.骨料粒径对混凝土靶抗高速破片侵彻影响的实验研究[J].兵工学报, 2012, 33(8):1009-1015. http://d.old.wanfangdata.com.cn/Periodical/bgxb201208019

    ZHANG Wei, MU Zhongcheng, XIAO Xinke. Experimental study on effect of aggregate size to anti-penetration ability of concrete targets subjected to high-velocity fragments[J]. Acta Armamentarii, 2012, 33(8):1009-1015. http://d.old.wanfangdata.com.cn/Periodical/bgxb201208019
    [8] 张凤国, 刘军, 梁龙河, 等.数值建模时骨料对混凝土侵彻及毁伤问题的影响[J].爆炸与冲击, 2013, 33(2):217-220. doi: 10.3969/j.issn.1001-1455.2013.02.017

    ZHANG Fengguo, LIU jun, LIANG Longhe, et al. Influence of aggregate on penetration process of concrete target when numerical modeling[J]. Explosion and Shock Waves, 2013, 33(2):217-220. doi: 10.3969/j.issn.1001-1455.2013.02.017
    [9] FANG Q, ZHANG J. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble[J]. International Journal of Impact Engineering, 2014, 63(1):118-128. https://www.sciencedirect.com/science/article/pii/S0734743X13001656
    [10] 张兆军, 王晓鸣, 李文彬.粗骨料种类对刚性弹贯穿混凝土靶剩余速度的影响[J].振动与冲击, 2014, 33(7):170-173. http://d.old.wanfangdata.com.cn/Periodical/zdycj201407029

    ZHANG Zhaojun, WANG Xiaoming, LI Wenbin. Effect of coarse aggregate type on residual velocity of rigid-projectiles-perforating concrete targets[J]. Journal of Vibration and Shock, 2014, 33(7):170-173. http://d.old.wanfangdata.com.cn/Periodical/zdycj201407029
    [11] HOLQMUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rate, and high pressures[C]//Proceedings of 14th International Symposium on Ballistics. Quebec, Canada, 1993: 591-600.
    [12] 方秦, 孔祥振, 吴昊, 等.岩石Holmquist-Johnson-Cook模型参数的确定方法[J].工程力学, 2014, 31(3):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201403028.htm

    FANG Qin, KONG Xiangzhen, WU Hao, et al. Determination of Holmquist-Johnson-Cookconsitiutive model parameters of rock[J]. Engineering Mechanics, 2014, 31(3):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201403028.htm
    [13] MEYER C S. Development of geomaterial parameters for numerical simulations using the Holmquist-Johnson-Cook constitutive model for concrete: ARL-TR-5556[R]. Army Research Laboratory Aberdeen Proving Ground md Weapons and Materials Research Directorate, 2011.
    [14] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements[J]. International Journal of Impact Engineering, 2003, 28(5):479-497. doi: 10.1016/S0734-743X(02)00108-2
    [15] 徐飞.普通混凝土骨料最小空隙率的探讨[J].混凝土, 2004(3):17-18. doi: 10.3969/j.issn.1002-3550.2004.03.006

    XU Fei. The research of minimal fraction void of concrete aggregate[J]. Concrete, 2004(3):17-18. doi: 10.3969/j.issn.1002-3550.2004.03.006
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  5706
  • HTML全文浏览量:  1346
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-14
  • 修回日期:  2017-05-22
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回