不同粒径PMMA粉尘云火焰温度特性研究

甘波 高伟 张新燕 姜海鹏 毕明树

甘波, 高伟, 张新燕, 姜海鹏, 毕明树. 不同粒径PMMA粉尘云火焰温度特性研究[J]. 爆炸与冲击, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244
引用本文: 甘波, 高伟, 张新燕, 姜海鹏, 毕明树. 不同粒径PMMA粉尘云火焰温度特性研究[J]. 爆炸与冲击, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244
GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Flame temperatures of PMMA dust clouds with different particle size distributions[J]. Explosion And Shock Waves, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244
Citation: GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Flame temperatures of PMMA dust clouds with different particle size distributions[J]. Explosion And Shock Waves, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244

不同粒径PMMA粉尘云火焰温度特性研究

doi: 10.11883/bzycj-2017-0244
基金项目: 

国家自然科学基金 51406023

国家自然科学基金 51674059

中央高校基本科研业务费专项 DUT16QY05

详细信息
    作者简介:

    甘波(1994-), 男, 硕士研究生

    通讯作者:

    高伟, gaoweidlut@dlut.edu.cn

  • 中图分类号: O383;X932

Flame temperatures of PMMA dust clouds with different particle size distributions

  • 摘要: 为揭示粒径分布对聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)粉尘云火焰温度的影响,本文分别采用热电偶和高速比色测温法测量了开敞空间不同粒径PMMA粉尘云的火焰温度特性。结果表明:相比30 μm粉尘粒子,100 nm粉尘粒子热解/挥发速率较快,燃烧更加充分,粉尘云火焰的最高温度可达1 551℃,而30 μm粉尘云火焰最高温度仅为1 108℃;在微米尺度,随着PMMA粉尘粒径的增大,火焰最高温度和高温火焰区面积先增大后减小;20 μm粉尘粒子由于其分散性较好,裂解气化特征时间尺度与燃烧反应特征时间尺度较接近,燃烧反应充分,火焰最高温度和高温火焰区面积均最大。
  • 图  1  开放式粉尘爆炸火焰传播实验系统示意图

    Figure  1.  Illustration of experimental setup for open-space dust flame propagation

    图  2  时序控制示意图

    Figure  2.  Schematic diagram of timing control

    图  3  R型热电偶示意图

    Figure  3.  Type R thermocouple

    图  4  比色温度测量方法

    Figure  4.  Colorime temperature measurement

    图  5  PMMA粉尘云火焰温度时程曲线

    Figure  5.  Flame temperature histories of PMMA dust cloud

    图  6  3 μm的PMMA粉尘云火焰形态和火焰温度分布

    Figure  6.  Flame configuration and temperature distribution of 3 μm PMMA dust cloud

    图  7  10 μm的PMMA粉尘云火焰形态和火焰温度分布

    Figure  7.  Flame configuration and temperature distribution of 10 μm PMMA dust cloud

    图  8  20 μm的PMMA粉尘云火焰形态和火焰温度分布

    Figure  8.  Flame configuration and temperature distribution of 20 μm PMMA dust cloud

    图  9  30 μm的PMMA粉尘云火焰形态和火焰温度分布

    Figure  9.  Flame configuration and temperature distribution of 30 μm PMMA dust cloud

    图  10  不同粒径PMMA粉尘粒子扫描电镜图

    Figure  10.  SEM images of PMMA dust particles of different particle sizes

  • [1] 蒯念生, 黄卫星, 袁旌杰, 等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击, 2012, 32(4):432-438.DOI: 10.11883/1001-1455(2012)04-0432-07.

    KUAI Niansheng, HUANG Weixing, YUAN Jingjie, et al. Influence of ignition energy on dust explosion behavior[J]. Explosion and Shock Wave, 2012, 32(4):432-438. DOI: 10.11883/1001-1455(2012)04-0432-07.
    [2] 高聪, 李化, 苏丹, 等.密闭空间煤粉的爆炸特性[J].爆炸与冲击, 2010, 30(2):164-168. doi: 10.11883/1001-1455(2010)02-0164-05

    GAO Cong, LI Hua, SU Dan, et al. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion and Shock Wave, 2010, 30(2):164-168. DOI: 10.11883/1001-1455(2010)02-0164-05.
    [3] 张洪铭, 陈先锋, 张英, 等.基于RGB颜色模型的玉米淀粉爆燃火焰传播速度[J].爆炸与冲击, 2018, 38(1):133-139. doi: 10.11883/bzycj-2016-0278

    ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, et al. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion and Shock Wave, 2018, 38(1):133-139. DOI: 10.11883/bzycj-2016-0278.
    [4] DOBASH R, SENDA K. Mechanisms of flame propagation through suspended combustible particles[J]. Journal de Physique Ⅳ, 2002, 12(7):459-465. DOI: 10.1051/jp4:20020316.
    [5] CHEN J L, DOBASH R, HIRANO T. Mechanism of flame propagation through combustible particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3):225-229. DOI: 10.1016/0950-4230(96)00001-0.
    [6] GAO W, DOBASH R, MOGI T, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6):993-999. DOI: 10.1016/j.fuel.2013.05.071.
    [7] GAO W, YU J L, MOGI T, et al. Effects of particle thermal characteristics on flame microstructures during dust explosions of three long-chain monobasic alcohols in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2014, 32(11):127-134. DOI: 10.1016/j.jlp.2014.08.005.
    [8] GAO W, MOGI T, SUN J H, et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber[J]. Fuel, 2013, 113(11):86-96. DOI: 10.1016/j.fuel.2013.05.071.
    [9] GAO W, MOGI T, SUN J H, et al. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions[J]. Powder Technology, 2013, 249(11):168-174. DOI: 10.1016/j.powtec.2013.08.007.
    [10] GAO W, MOGI T, YU J L, et al. Flame propagation mechanisms in dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2015, 36(7):186-194. DOI: 10.1016/j.jlp.2014.12.021.
    [11] 高伟, 圆井道也, 荣建忠, 等.粒径分布对有机粉尘爆炸中火焰结构的影响[J].燃烧科学与技术, 2013, 19(2): 157-162. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201302012.htm

    GAO Wei, MARUI Michiya, RONG Jianzhong, et al. Effect of particle size distribution on flame structure in organic dust explosion[J]. 2013, 19(2): 157-162. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201302012.htm
    [12] 曹卫国, 徐森, 梁济元, 等.煤粉尘爆炸过程中火焰的传播特性[J].爆炸与冲击, 2014, 34(5):586-593. doi: 10.11883/1001-1455(2014)05-0586-08

    CAO Weiguo, XU Sen, LIANG Jiyuan, et al. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion and Shock Wave, 2014, 34(5):586-593. DOI: 10.11883/1001-1455(2014)05-0586-08.
    [13] WINGERDEN K V, STAVSENG L. Measurements of the laminar burning velocities in dust-air mixtures[J]. VDI-Berichte, 1996(1272):553-564.
    [14] 孙金华.PMMA微粒子云中传播火焰的基本结构[J].热科学与技术, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017

    SUN Jinhua. The basic structure of propagating flame in PMMA micro-particle clouds[J]. Journal of Thermal Science and Technology, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017
    [15] ZHANG X Y, YU J L, GAO W, et al. Flame propagation behaviors of nano-and micro-scale PMMA dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2016, 40(3):101-111. DOI: 10.1016/j.jlp.2015.12.010.
    [16] ZHANG X Y, YU J L, GAO W, et al. Effects of particle size distributions on PMMA dust flame propagation behaviors[J]. Powder Technology, 2017, 317(7):197-208. DOI: 10.1016/j.powtec.2017.05.001.
    [17] BALLANTYNE A, MOSS J B. Fine wire thermocouple measurements of fluctuating temperature[J]. Combustion Science and Technology, 1977, 17(1/2):63-72. DOI: 10.1080/00102209708946813.
    [18] 杨世铭.传热学[M].北京:北京高等教育出版社, 1987:331-333.
    [19] 姜滦生, 孙皆宜, 刘爽.基于CCD比色原理的熟料温度场测量[J].仪器仪表学报, 2006(增刊1):52-54. http://d.old.wanfangdata.com.cn/Periodical/yqyb2006z1021

    JIANG Luansheng, SUN Jieyi, LIU Shuang. Measurement of clinker temperature field based on CCD colorimetric theory[J]. Chinese Journal of Scientific Instrument, 2006(Suppl 1):52-54. http://d.old.wanfangdata.com.cn/Periodical/yqyb2006z1021
    [20] GAO W, MOGI T, RONG J Z, et al. Motion behaviors of the unburned particles ahead of flame front in hexadecanol dust explosion[J]. Powder Technology, 2015, 271(2):125-133. DOI: 10.1016/j.powtec.2014.11.003.
  • 加载中
图(10)
计量
  • 文章访问数:  5618
  • HTML全文浏览量:  1576
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-10
  • 修回日期:  2017-10-02
  • 刊出日期:  2019-01-05

目录

    /

    返回文章
    返回