不同应变率下聚乙烯材料的压缩力学性能

徐立志 高光发 赵真 王江波 程春 杜忠华

徐立志, 高光发, 赵真, 王江波, 程春, 杜忠华. 不同应变率下聚乙烯材料的压缩力学性能[J]. 爆炸与冲击, 2019, 39(1): 013301. doi: 10.11883/bzycj-2017-0266
引用本文: 徐立志, 高光发, 赵真, 王江波, 程春, 杜忠华. 不同应变率下聚乙烯材料的压缩力学性能[J]. 爆炸与冲击, 2019, 39(1): 013301. doi: 10.11883/bzycj-2017-0266
XU Lizhi, GAO Guangfa, ZHAO Zhen, WANG Jiangbo, CHENG Chun, DU Zhonghua. Compressive mechanical properties of polyethylene at different strain rates[J]. Explosion And Shock Waves, 2019, 39(1): 013301. doi: 10.11883/bzycj-2017-0266
Citation: XU Lizhi, GAO Guangfa, ZHAO Zhen, WANG Jiangbo, CHENG Chun, DU Zhonghua. Compressive mechanical properties of polyethylene at different strain rates[J]. Explosion And Shock Waves, 2019, 39(1): 013301. doi: 10.11883/bzycj-2017-0266

不同应变率下聚乙烯材料的压缩力学性能

doi: 10.11883/bzycj-2017-0266
基金项目: 

国家自然科学基金 11472008

国家自然科学基金 11772160

国家自然科学基金 11202206

"十三五"装备预研领域基金 KFJJ13-9M

中央高校基本科研业务费专项 30915118801

江苏省自然科学基金 BK20170819

"力学"浙江省重中之重学科开放基金 xklx1513

详细信息
    作者简介:

    徐立志(1990-), 男, 博士研究生

    通讯作者:

    杜忠华, duzhonghua@aliyun.com

  • 中图分类号: O347;TJ413

Compressive mechanical properties of polyethylene at different strain rates

  • 摘要: 为了研究聚乙烯材料在不同应变率下的压缩力学性能,通过准静态实验和动态实验获得聚乙烯材料不同应变率下的应力应变曲线,分析发现:聚乙烯的弹性模量和屈服强度随应变率增大而增大,具有明显的黏弹塑性;聚乙烯材料进入塑性阶段,其应力应变曲线在不同应变率下具有相近的变化趋势,即塑性切向模量近似相同。根据聚乙烯材料的压缩力学性能,建立了弹性区、屈服点和塑性区的分段本构模型。该模型的屈服点和塑性段与实验结果吻合较好,由于弹性段采用线弹性模型,与实验结果存在一定偏差,可近似描述材料的弹性行为。
  • 图  1  准静态实验装置图

    Figure  1.  Quasi-static experimental device

    图  2  工程和真实应力应变曲线的对比

    Figure  2.  Comparison between engineering and true stress-strain curve

    图  3  SHPB装置示意图

    Figure  3.  Schematic of SHPB system

    图  4  动态实验波形

    Figure  4.  Dynamic response waves

    图  5  不同应变率下材料应力应变曲线

    Figure  5.  Stress-strain curves at different strain rates

    图  6  塑性模量拟合曲线

    Figure  6.  Fitted curves of plastic modulus

    图  7  弹性模量对数应变率关系曲线

    Figure  7.  Relation between elastic modulus and logarithmic strain rate

    图  8  屈服应力模量对数应变率关系曲线

    Figure  8.  Relation between yield stress and logarithmic strain rate

    图  9  塑性应力应变关系曲线

    Figure  9.  Relation between plastic stress and strain

    图  10  不同应变率下塑性应力应变曲线

    Figure  10.  Relation between plastic stress and strain at different strain rates

    表  1  参数拟合结果

    Table  1.   Fitted parameters

    ${\dot \varepsilon } $/s-1 A B C/MPa D σi/MPa $ {\dot \varepsilon }$0/s-1 m n
    < 1 000 0.086 2 0.718 2 9 684.904 1.916 1 19.457 4 2.178 7×108 1.07 0.482 87
    ≥1 000 5.065 8 -14.363 8
    下载: 导出CSV
  • [1] 徐立志, 杜忠华, 杜成鑫, 等.壳体切缝的结构参数对PELE横向效应的影响[J].含能材料, 2016, 24(8):742-746.DOI: 10.11943/j.issn.1006-9941.2016.08.003.

    XU Lizhi, DU Zhonghua, DU Chengxin, et al. Effect of structure parameters of the jacket breakage on lateral effect of PELE[J]. Chinese Journal of Energetic Materials, 2016, 24(8):742-746. DOI: 10.11943/j.issn.1006-9941.2016.08.003.
    [2] PAULUS G, SCHIRM V. Impact behavior of PELE projectiles perforating thin target plates[J]. International Journal of Impact Engineering, 2006, 33(1-12):566-579. DOI: 10.1016/j.ijimpeng.2006.09.026.
    [3] DU Zhonghua, SONG Lili, ZHONG Kun, et al. Influence of the ratio of inner to outer diameter on penetrator with enhanced lateral efficiency[J]. Journal of Computational and Theoretical Nanoscience, 2011, 4(4):1525-1528. DOI: 10.1166/asl.2011.1493.
    [4] 蒋建伟, 张谋, 门建兵, 等.不同内核材料PELE弹丸对多层靶穿甲实验研究[J].北京理工大学学报, 2010, 30(9):1009-1012.DOI: 10.15918/j.tbit1001-0645.2010.09.009.

    JIANG Jianwei, ZHANG Mou, MEN Jianbing, et al. Experimental study on multi-layered target penetration of PELE with different cores[J]. Transactions of Beijing Institute of Technology, 2010, 30(9):1009-1012. DOI: 10.15918/j.tbit1001-0645.2010.09.009.
    [5] 朱建生, 赵国志, 杜忠华.装填材料对PELE效应的影响[J].弹道学报, 2007, 19(2):62-65.DOI: 10.3969/j.issn.1004-499X.2007.02.017.

    ZHU Jiansheng, ZHAO Guozhi, DU Zhonghua. Influence of the filling material on the PELE effect[J]. Journal of Ballistics, 2007, 19(2):62-62. DOI: 10.3969/j.issn.1004-499X.2007.02.017.
    [6] XU Mingming, HUANG Guangyuan, FENG Shunshan, et al. Static and dynamic properties of semi-crystalline polyethylene[J]. Polymers, 2016, 8(4):77. DOI: 10.3390/polym8040077.
    [7] NISHIDA M, NATSUME R, HAYASHI M. Strain rate dependence of yield condition of polyamide 11[M]//Dynamic Behavior of Materials, Volume 1. Springer International Publishing, 2014: 121-127. DOI: 10.1007/978-3-319-00771-7_15.
    [8] DUAN Y, SAIGAL A, GREIF R, et al. A uniform phenomenological constitutive model for glassy and semi-crystalline polymers[J]. Polymer Engineering and Science, 2001, 41(8):1322-1328. DOI: 10.1002/pen.10832.
    [9] MULLIKEN A D, BOYCE M C. Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates[J]. International Journal of Solids and Structures, 2006, 43(5):1331-1356. DOI: 10.1016/j.ijsolstr.2005.04.016.
    [10] DAR U A, ZHANG Weihong, XU Yingjie, et al. Thermal and strain rate sensitive compressive behavior of polycarbonate polymer-experimental and constitutive analysis[J]. Journal of Polymer Research, 2014, 21(8):1-10. DOI: 10.1007/s10965-014-0519-z.
    [11] YU Peng, YAO Xiaohua, HAN Qiang, et al. A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates andtemperatures[J]. Polymer, 2014, 55(25):6577-6593. DOI: 10.1016/j.polymer.2014.09.071.
    [12] ZHOU Yuanxin, RANGARI V, MAHFUZ H, et al. Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites[J]. Materials Science and Engineering A, 2005, 402(1):109-117. DOI: 10.1016/j.msea.2005.04.014.
    [13] 郑文龙.GB/T 7314-2005《金属材料室温压缩试验方法》实施要点[J].工程与试验, 2006, 46(4):55-70.DOI: 10.3969/j.issn.1674-3407.2006.04.017.

    ZHENG Wenlong. GB/T 7314-2005 points of the testing method used for metal materials in compression at ambient temperature[J]. Test Technology and Testing Machine, 2006, 46(4):55-70. DOI: 10.3969/j.issn.1674-3407.2006.04.017.
    [14] 唐志平.横观各向同性材料动态力学性能试验中的试件最佳尺寸[J].爆炸与冲击, 1985, 5(2):3-12. http://www.bzycj.cn/CN/abstract/abstract11125.shtml

    TANG Zhiping. Optimum size of transversal isotropic specimen in dynamic testing using the split hopkinson pressure bar[J]. Explosion and Shock Waves, 1985, 5(2):3-12. http://www.bzycj.cn/CN/abstract/abstract11125.shtml
    [15] 高光发, 李永池, 刘卫国.多孔硬脆性材料的SHPB实验技术[J].力学与实践, 2011, 33(6):35-39.DOI: 10.6052/1000-0879-lxysj2010-178.

    GAO Guangfa, LI Yongchi, LIU Weiguo. Experimentaltechnology of SHPB forporous hard and brittle materials[J]. Mechanics in Engineering, 2011, 33(6):35-39. DOI: 10.6052/1000-0879-lxysj2010-178.
    [16] 卢芳云, CHEN W, FREW D J.软材料的SHPB实验设计[J].爆炸与冲击, 2002, 22(1):15-19. doi: 10.3321/j.issn:1001-1455.2002.01.003

    LU Fangyun, CHEN W, FREW D J. A design of SHPB experiments for soft materials[J]. Explosion and Shock Waves, 2002, 22(1):15-19. doi: 10.3321/j.issn:1001-1455.2002.01.003
    [17] PHILLIPS A, MOON H. An experimental investigation concerning yield surfaces and loading surface[J]. ActaMechanica, 1977, 27(1-4):91-102. DOI: 10.1007/BF01180078.
    [18] 金涛.半晶态聚合物屈服行为及宏观唯象本构研究[D].太原: 太原理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10112-1016714312.htm

    JIN Tao. Yield behavior and macroscopic phenomenological constitutive of semi-crystalline polymer[D]. Taiyuan: Taiyuan University of Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10112-1016714312.htm
    [19] RICHETON J, AHZI S, VECCHIO K S, et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers:Characterization and modeling of the compressive yield stress[J]. International Journal of Solids and Structures, 2006, 43(7-8):2318-2335. DOI: 10.1016/j.ijsolstr.2005.06.040.
    [20] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. 1983.
    [21] OMAR M F, AKIL H M, AHMAD Z A. Effect of molecular structures on dynamic compression properties of polyethylene[J]. Materials Science and Engineering A, 2012, 538(11):125-134. DOI: 10.1016/j.msea.2011.12.111.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  5722
  • HTML全文浏览量:  1930
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2017-09-15
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回