ICE自由面台阶靶数据处理的直接计算方法

金云声 孙承纬 赵剑衡 罗斌强 王桂吉 谭福利

金云声, 孙承纬, 赵剑衡, 罗斌强, 王桂吉, 谭福利. ICE自由面台阶靶数据处理的直接计算方法[J]. 爆炸与冲击, 2019, 39(4): 044201. doi: 10.11883/bzycj-2017-0294
引用本文: 金云声, 孙承纬, 赵剑衡, 罗斌强, 王桂吉, 谭福利. ICE自由面台阶靶数据处理的直接计算方法[J]. 爆炸与冲击, 2019, 39(4): 044201. doi: 10.11883/bzycj-2017-0294
JIN Yunsheng, SUN Chengwei, ZHAO Jianheng, LUO Binqiang, WANG Guiji, TAN Fuli. Direct calculation method for free surface data processing of step target in ICE[J]. Explosion And Shock Waves, 2019, 39(4): 044201. doi: 10.11883/bzycj-2017-0294
Citation: JIN Yunsheng, SUN Chengwei, ZHAO Jianheng, LUO Binqiang, WANG Guiji, TAN Fuli. Direct calculation method for free surface data processing of step target in ICE[J]. Explosion And Shock Waves, 2019, 39(4): 044201. doi: 10.11883/bzycj-2017-0294

ICE自由面台阶靶数据处理的直接计算方法

doi: 10.11883/bzycj-2017-0294
详细信息
    作者简介:

    金云声(1983- ),男,博士研究生,助理研究员,yunsheng@mail.ustc.edu.cn

  • 中图分类号: O381

Direct calculation method for free surface data processing of step target in ICE

  • 摘要: 斜波压缩台阶靶实验中,不同厚度界面粒子速度历史与材料压缩特性参数存在联系。然而利用普遍采用的数据处理方法无法直接获得该联系。本文中借助特征线理论在建立上述关联的基础上,实现未知EOS下斜波压缩流场的直接计算过程。经数值计算表明,该方法不仅在无强度效应数据处理中能够准确计算理论值,而且在含有强度效应数据处理中也能够较好地逼近理论值,并可在真实实验数据处理中获得与文献符合较好的结果。该研究可为探索具有较完整理论的强度效应数据处理方法提供新途径。
  • 图  1  未知EOS条件下求解流场示意图

    Figure  1.  Schematic of calculating the flow field without EOS

    图  2  加载面速度历史和两个样品自由面速度历史

    Figure  2.  The input data of loading surface velocity history and the free surface velocity history by calculation

    图  3  特征线方法计算获得流场

    Figure  3.  The calculated flow field by characteristic method

    图  4  声速与原位粒子速度关系比对(利用自由面速度上升段速度历史数据)

    Figure  4.  Comparison of sound speeds between different methods (from the rising section of the free surface velocity history curves)

    图  5  声速与原位粒子速度关系比对(利用自由面速度历史下降段历史数据)

    Figure  5.  Comparison of sound speeds between different methods (from the falling section of the free surface velocity history curves)

    图  6  LSDYNA计算获得速度历史(考虑了强度)

    Figure  6.  Free surface velocity history with strength effect calculated by LSDYNA

    图  7  声速与原位粒子速度关系曲线的对比结果

    Figure  7.  Comparison of the relations between Lagrange sound speed and in-situ particle velocity by different methods

    图  8  阶梯靶实验中金属铜的自由面速度历史

    Figure  8.  The free surface velocity curves of Cu in step target experiment

    图  9  声速与自由面速度关系曲线

    Figure  9.  Relation between Lagrange sound velocity and free surface velocity

  • [1] DAVIS J P, DEENEY C, KNUDSON M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator [J]. Physics of Plasmas, 2005, 12(5): 56310–17. DOI: 10.1063/1.1871954.
    [2] MCNALLY J H, BARNES J W, DROPESKY B J, et al. Neutron-induced fission cross section of 237U [J]. Physical Review C, 1974, 9(2): 717–722. DOI: 10.1103/PhysRevC.9.717.
    [3] SWIFT D C, KRAUS R G, LOOMIS E, et al. Shock formation and the ideal shape of ramp compression waves [J]. Physical Review E, 2008, 78(6): 066115. DOI: 10.1103/PhysRevE.78.066115.
    [4] LEMKE R W, KNUDSON M D, ROBINSON A C, et al. Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates [J]. Physics of Plasmas, 2003, 10(5): 1557530. DOI: 10.1063/1.1557530.
    [5] DAVIS J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa [J]. Journal of Applied Physics, 2006, 99(10): 103512. DOI: 10.1063/1.2196110.
    [6] LEMKE R W, KNUDSON M D, DAVIS J P, et al. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. DOI: 10.1016/j.ijimpeng.2010.10.019.
    [7] WANG Guiji, LUO Binqiang, ZHANG Xuping, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. DOI: 10.1063/1.4788935.
    [8] SWIFT D C, JOHNSON R P. Quasi-isentropic compression by ablative laser loading: response of materials to dynamic loading on nanosecond time scales [J]. Physical Review E, 2005, 71: 066401. DOI: 10.1103/PhysRevE.71.066401.
    [9] LORENZ K T, EDWARDS M J, JANKOWSKI A F, et al. High pressure, quasi-isentropic compression experiments on the Omega laser [J]. High Energy Density Physics, 2006, 2(3−4): 113–125. DOI: 10.1016/j.hedp.2006.08.001.
    [10] ASAY J R, AO T, DAVIS J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression [J]. Journal of Applied Physics, 2008, 103(8): 083514. DOI: 10.1063/1.2902855.
    [11] AO T, ASAY J R, CHANTRENNE S, et al. A compact strip-line pulsed power generator for isentropic compression experiments [J]. Review of Scientific Instruments, 2008, 79(1): 013903. DOI: 10.1063/1.2827509.
    [12] VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading [J]. International Journal of Plasticity, 2009, 25(4): 671–694. DOI: 10.1016/j.ijplas.2008.12.003.
    [13] BROWN J L, ALEXANDER C S, ASAY J R, et al. Extracting strength from high pressure ramp-release experiments [J]. Journal of Applied Physics, 2013, 114(22): 223518. DOI: 10.1063/1.4847535.
    [14] BROWN J L, ALEXANDER C S, ASAY J R, et al. Flow strength of tantalum under ramp compression to 250 GPa [J]. Journal of Applied Physics, 2014, 115(4): 043530. DOI: 10.1063/1.4863463.
    [15] DAVIS J P, BROWN J L, KNUDSON M D, et al. Analysis of shockless dynamic compression data on solids to multimegabar pressure: application to tantalum [J]. Journal of Applied Physics, 2014, 116: 204903. DOI: 10.1063/1.4902863.
    [16] OCKENDON H, OCKENDON J R, PLATT J D. Determining the equation of state of highly plasticised metals from boundary velocimetry: part I [J]. Journal Engineering Mathematics, 2010, 68: 269–277. DOI: 10.1007/s10665-010-9401-0.
    [17] HINCH E J. Determining the equation of state of highly plasticised metals from boundary velocimetry [J]. Journal Engineering Mathematics, 2010, 68: 279–289. DOI: 10.1007/s10665-010-9379-7.
    [18] JIN Yunsheng, SUN Chengwei, ZHAO Jianheng, et al. Optimization of loading pressure waveforms for piston driven isentropic compression [J]. Journal of Applied Physics, 2014, 115(24): 243506. DOI: 10.1063/1.4885756.
    [19] KRAUS R G, DAVIS J P, SEAGLE C T, et al. Dynamic compression of copper to over 450 GPa: a high-pressure standard [J]. Physical Review B, 2016, 93: 134105. DOI: 10.1103/PhysRevB.93.134105.
    [20] 张红平, 孙承纬, 李牧, 等. 准等熵实验数据处理的反积分方法研究 [J]. 力学学报, 2011, 43(1): 105–111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053

    ZHANG Hongping, SUN Chengwei, LI Mu, et al. Backward integration method in data processing of quasi-isentropic compression experiment [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 105–111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053
  • 加载中
图(9)
计量
  • 文章访问数:  4921
  • HTML全文浏览量:  1624
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-21
  • 修回日期:  2018-02-11
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回