爆炸压实/扩散烧结法制备钨铜梯度材料

陈翔 李晓杰 缪玉松 闫鸿浩 王小红

陈翔, 李晓杰, 缪玉松, 闫鸿浩, 王小红. 爆炸压实/扩散烧结法制备钨铜梯度材料[J]. 爆炸与冲击, 2019, 39(1): 015301. doi: 10.11883/bzycj-2017-0307
引用本文: 陈翔, 李晓杰, 缪玉松, 闫鸿浩, 王小红. 爆炸压实/扩散烧结法制备钨铜梯度材料[J]. 爆炸与冲击, 2019, 39(1): 015301. doi: 10.11883/bzycj-2017-0307
CHEN Xiang, LI Xiaojie, MIAO Yusong, YAN Honghao, WANG Xiaohong. Explosive compaction-sintering of tungsten/copper gradient material[J]. Explosion And Shock Waves, 2019, 39(1): 015301. doi: 10.11883/bzycj-2017-0307
Citation: CHEN Xiang, LI Xiaojie, MIAO Yusong, YAN Honghao, WANG Xiaohong. Explosive compaction-sintering of tungsten/copper gradient material[J]. Explosion And Shock Waves, 2019, 39(1): 015301. doi: 10.11883/bzycj-2017-0307

爆炸压实/扩散烧结法制备钨铜梯度材料

doi: 10.11883/bzycj-2017-0307
基金项目: 

国家自然科学基金 11272081

国家自然科学基金 11672067

国家自然科学基金 11672068

详细信息
    作者简介:

    陈翔(1990-), 男, 博士研究生

    通讯作者:

    李晓杰, dalian03@qq.com

  • 中图分类号: O389

Explosive compaction-sintering of tungsten/copper gradient material

  • 摘要: 采用爆炸压实/扩散烧结方法成功制备出高致密度的钨铜梯度材料。首先,使用机械合金化法分别制备50% W-50% Cu,75% W-25% Cu的钨铜合金粉末,并将两种合金粉末依次铺在铜板表面进行预压、通氢烧结,然后进行爆炸压实,最后对爆炸压实后的试件进行扩散烧结,得到高致密度且层间结合紧密的钨铜梯度材料。对样品分析表明,铜在钨铜颗粒间的交界面处富集,其中50% W-50% Cu层中的钨颗粒未发生长大,75% W-25% Cu层中钨与铜出现了在局部区域富集的情况,钨铜层中钨铜的含量与起始加入的钨铜粉末配比保持一致。对各钨铜层进行孔隙度检测可见,50% W-50% Cu层的孔隙度为0.04%,75% W-25% Cu层的孔隙度为0.11%。钨铜层的硬度也呈现出梯度变化,维氏硬度值在125~341之间,远大于铜基体的50。
  • 图  1  材料制备流程

    Figure  1.  Illustration of fabrication process

    图  2  球磨前粉末扫描电镜下形貌

    Figure  2.  Scanning electron microscopy images of powders' microstructure before ball milling

    图  3  球磨后粉末EDS分析区域

    Figure  3.  EDS analysis areas of powders after ball milling

    图  4  爆炸压实装置

    Figure  4.  Explosive compaction device

    图  5  爆炸压实过程数值模拟

    Figure  5.  Simulation of explosive compaction process

    图  6  数值模拟得出的观测点压力时程曲线

    Figure  6.  Simulated pressure-time curves at observation points

    图  7  试件的金相照片

    Figure  7.  Metallographic photograph of sample

    图  8  孔隙度检测照片

    Figure  8.  Images of coatings in porosity test

    图  9  样品整体的背散射图

    Figure  9.  Backscatter image of the whole sample

    图  10  不同合金材料交界处背散射照片

    Figure  10.  Backscatter image of the interface between different alloy materials

    图  11  不同合金材料交界处微观背散射照片

    Figure  11.  Microstructure backscatter image of interface between different alloy materials

    图  12  钨铜合金层与铜层交界处背散射照片

    Figure  12.  Backscatter image of the interface between tungsten/copper alloy and copper

    图  13  冷压结合烧结制备出的钨铜合金材料背散射照片

    Figure  13.  Backscatter image of the cold pressing-sintering tungsten/copper alloy

    图  14  涂层的EDS检测区域

    Figure  14.  EDS analysis region of coatings

    图  15  维氏硬度测试结果

    Figure  15.  Variations of microhardness across the interface

    表  1  压力与材料密度之间的关系

    Table  1.   Relation between pressure and material density

    ρ/ρ0 pmin
    0.950 2.0 σs (维氏硬度≈0.67)
    0.990 3.1 σs (维氏硬度≈1.00)
    0.999 4.6 σs (维氏硬度≈1.54)
    下载: 导出CSV

    表  2  观测点处最大压力

    Table  2.   Maximum pressure at observation points

    观测点 p/GPa
    G1 1.65
    G2 3.31
    G3 3.31
    G4 5.44
    G5 5.44
    G6 4.09
    G7 3.31
    G8 3.31
    G9 2.97
    G10 5.44
    G11 5.44
    G12 5.44
    G13 3.31
    G14 3.31
    G15 3.31
    G16 5.44
    G17 5.44
    G18 5.44
    下载: 导出CSV
  • [1] CALLISTI M, KARLI M, POLCAR T. Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites:Effects on structure and mechanical properties[J]. Journal of Nuclear Materials, 2016, 473:18-27. DOI: 10.1016/j.jnucmat.2016.02.006.
    [2] GAO Hongmei, CHEN Wenge, ZHANG Zhijun. Evolution mechanism of surface nano-crystallization of tungsten-copper alloys[J]. Materials Letters, 2016, 176:181-184. DOI: 10.1016/j.matlet.2016.04.104.
    [3] ELSAYED A, LI Wei, El KADY O A, et al. Experimental investigations on the synthesis of W/Cu nanocomposite through spark plasma sintering[J]. Journal of Alloys and Compounds, 2015, 639:373-380. DOI: 10.1016/j.jallcom.2015.03.183.
    [4] TANG Xiaoqiao, ZHANG Haibin, DU Daming, et al. Fabrication of W-Cu functionally graded material by spark plasma sintering method[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42:193-199. DOI: 10.1016/j.ijrmhm.2013.09.005.
    [5] ZHOU ZhangJian, DU Juan, SONG Shuxiang, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method[J]. Journal of Alloys and Compounds, 2007, 428(1):146-150. DOI: 10.1016/j.jallcom.2006.03.073.
    [6] LI Shibo, XIE Hanxin. Processing and microstructure of functionally graded W/Cu composites fabricated by multi-billet extrusion using mechanically alloyed powders[J]. Composites Science and Technology, 2006, 66(13):2329-2336. DOI: 10.1016/j.compscitech.2005.11.034.
    [7] DÖRING J E, VASSEN R, PINTSUK G, et al. The processing of vacuum plasma-sprayed tungsten-copper composite coatings for high heat flux components[J]. Fusion Engineering and Design, 2003, 66/67/68:259-263. DOI: 10.1016/S0920-3796(03)00302-8.
    [8] PRÜMMER R. Explosive compaction of powders, principle and prospects[J]. Materialwissenschaft und Werkstofftechnik, 1989, 20(12):410-415. DOI: 10.1002/mawe.19890201213.
    [9] 王占磊, 李晓杰, 张程娇, 等.爆炸烧结W-Cu合金药型罩材料及其性能[J].爆炸与冲击, 2011, 31(3):332-336.DOI: 10.11883/1001-1455(2011)03-0332-05.

    WANG Zhanlei, LI Xiaojie, ZHANG Chengjiao, et al. Explosive consolidation of W-Cu alloy as liner materials and its performance[J]. Explosion and Shock Waves, 2011, 31(3):332-336. DOI: 10.11883/1001-1455(2011)03-0332-05.
    [10] VOROZHTSOV S, VOROZHTSOV A, KUDRYASHOVA O, et al. Structural and mechanical properties of aluminium-based composites processed by explosive compaction[J]. Powder Technology, 2017, 313:251-259. DOI: 10.1016/j.powtec.2017.03.027.
    [11] 王金相, 张晓立, 赵铮, 等.非晶颗粒增强铝基非晶复合材料的爆炸压实及其力学性能[J].稀有金属材料与工程, 2009, 38(A01):48-51. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc2009z1011

    WANG Jinxiang, ZHANG Xiaoli, ZHAO Zheng, et al. Research of explosively compacted metallic glass particles-reinforced Al based MMCs and its mechanical property[J]. Rare Metal Materials and Engineering, 2009, 38(A01):48-51. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc2009z1011
    [12] CHEN Xiang, LI Xiaojie, YAN Honghao, et al. Factors affecting explosive compaction-sintering of tungsten-copper coating on a copper surface[J]. Journal of Alloys and Compounds, 2017, 729:1201-1208. DOI: 10.1016/j.jallcom.2017.09.278.
    [13] 杜长星, 赵铮, 陶钢, 等.爆炸压涂制备铜涂层的性[J].爆炸与冲击, 2014, 34(1):6-10.DOI: 10.11883/1001-1455(2014)01-0006-05.

    DU Changxing, ZHAO Zheng, TAO Gang, et al. Microstructure and properties of copper coating prepared by explosive compaction-coating[J]. Explosion and Shock Waves, 2014, 34(1):6-10. doi: 10.11883/1001-1455(2014)01-0006-05
    [14] TANAKA S, HOKAMOTO K, TORII S, et al. Surface coating by diamond particles on an aluminum substrate by underwater shock wave[J]. Journal of Materials Processing Technology, 2010, 210(1):32-36. DOI: 10.1016/j.jmatprotec.2009.08.023.
    [15] RAGHU T, SUNDARESAN R, RAMAKRISHNAN P, et al. Synthesis of nanocrystalline copper-tungsten alloys by mechanical Steady waves in ductile porous solids alloying[J]. Materials Science and Engineering:A, 2001, 304:438-441. DOI: 10.1016/S0921-5093(00)01444-1.
    [16] CARROLL M M, HOLT A C. Steady waves in ductile porous solids[J]. Journal of Applied Physics, 1973, 44(10):4388-4392. DOI: 10.1063/1.1661970.
    [17] ARDESTANI M, ARABI H, REZAIE H R, et al. Synthesis and densification of W-30wt% Cu composite powders using ammonium meta tungstate and copper nitrate as precursors[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(4):796-800. DOI: 10.1016/j.ijrmhm.2009.01.001.
    [18] CHEN Pingan, SHEN Qiang, LUO Guoqiang, et al. The mechanical properties of W-Cu composite by activated sintering[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36:220-224. DOI: 10.1016/j.ijrmhm.2012.09.001.
    [19] IBRAHIM A, ABDALLAH M, MOSTAFA S F, et al. An experimental investigation on the W-Cu composites[J]. Materials and Design, 2009, 30(4):1398-1403. DOI: 10.1016/j.matdes.2008.06.068.
    [20] WANG Zhanlei, LI Xiaojie, YAN Honghao, et al. Investigation on explosive compaction of W-Cu nanocomposite powders[J]. Combustion, Explosion, and Shock Waves, 2012, 48(2):245-249. doi: 10.1134/S0010508212020141
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  4565
  • HTML全文浏览量:  1501
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-03
  • 修回日期:  2017-12-05
  • 刊出日期:  2019-01-05

目录

    /

    返回文章
    返回