带模拟装药弹体高速冲击岩石靶时的断裂特性

孙其然 孙宇新 李芮宇 邓国强 胡金生

孙其然, 孙宇新, 李芮宇, 邓国强, 胡金生. 带模拟装药弹体高速冲击岩石靶时的断裂特性[J]. 爆炸与冲击, 2019, 39(1): 013303. doi: 10.11883/bzycj-2017-0313
引用本文: 孙其然, 孙宇新, 李芮宇, 邓国强, 胡金生. 带模拟装药弹体高速冲击岩石靶时的断裂特性[J]. 爆炸与冲击, 2019, 39(1): 013303. doi: 10.11883/bzycj-2017-0313
SUN Qiran, SUN Yuxin, LI Ruiyu, DENG Guoqiang, HU Jinsheng. Simulation of explosive simulant filled with high-velocity projectiles crushing onto rock[J]. Explosion And Shock Waves, 2019, 39(1): 013303. doi: 10.11883/bzycj-2017-0313
Citation: SUN Qiran, SUN Yuxin, LI Ruiyu, DENG Guoqiang, HU Jinsheng. Simulation of explosive simulant filled with high-velocity projectiles crushing onto rock[J]. Explosion And Shock Waves, 2019, 39(1): 013303. doi: 10.11883/bzycj-2017-0313

带模拟装药弹体高速冲击岩石靶时的断裂特性

doi: 10.11883/bzycj-2017-0313
详细信息
    作者简介:

    孙其然(1991-), 男, 博士研究生

    通讯作者:

    孙宇新, yxsun01@163.com

  • 中图分类号: O383

Simulation of explosive simulant filled with high-velocity projectiles crushing onto rock

  • 摘要: 针对高速侵彻过程中的弹体破碎断裂问题,本文中设计2种不同壁厚的试验弹,进行约1 000 m/s着速的高强度岩体侵彻试验,试验表明:在该高着速条件下,两种结构的试验弹体均发生完全破碎且未能有效侵入岩石靶,而岩石靶体仅在表层产生粉碎性破坏;另外,高速侵彻岩石靶的弹体头部破碎情况与侵彻金属薄靶有所区别。在试验基础上,利用Autodyn-3D建立了弹体侵彻岩石靶的物理模型,结合SPH算法与Mott失效模型对弹体破坏过程进行了数值模拟,可有效地揭示弹体破碎机理,并进一步讨论模拟装药和小范围内不同高速对弹体破坏的影响。试验结果和建立的数值模型可为研究高速侵彻中弹体结构安全提供参考。
  • 图  1  弹体结构示意图

    Figure  1.  Sketch of projectile geometry

    图  2  弹体冲击后岩石靶体正表面

    Figure  2.  Rock target's impacted surface

    图  3  试验现场收集的弹片

    Figure  3.  Collection of projectile fragments in field test

    图  4  两种典型破坏断面

    Figure  4.  Two typical broken sections

    图  5  计算模型

    Figure  5.  Simulation model

    图  6  弹体侵彻岩石靶过程

    Figure  6.  Simulation of penetration into rock

    图  7  弹壳破碎过程

    Figure  7.  Projectile fracture process

    图  8  t=300 μs时刻弹壳轴向裂纹

    Figure  8.  Axial crack in projectile (t=300 μs)

    图  9  无装填物的弹壳破坏过程

    Figure  9.  Crush process of projectile without filling

    图  10  不同弹速下弹壳破坏比较

    Figure  10.  Comparison of projectile crush at different velocites

    表  1  金属材料主要参数

    Table  1.   Main parameters of metal material

    位置 材料 ρ0/(kg·m-3) G/GPa A/GPa B/GPa n C
    弹体 35CrMnSi 7.93 81.8 1.500 0.500 0.26 0.014
    后盖 7039铝 2.77 27.6 0.337 0.345 0.41 0.010
    钢圈 4340钢 7.83 81.8 0.792 0.510 0.26 0.014
    下载: 导出CSV

    表  2  硫磺材料参数

    Table  2.   Material parameters of sulfur

    材料 ρ0/(kg·m-3) Grüneisen系数 c/(m·s-1) S1
    硫磺 2.02 0 2.7 0.95
    下载: 导出CSV
  • [1] 李硕.强冲击载荷下35CrMnSi动态力学行为与断裂机理研究[D].中北大学, 2015: 5-20. http://cdmd.cnki.com.cn/Article/CDMD-10110-1015584566.htm
    [2] JENA P K, MISHRA B, RAMESHBABU M, et al. Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel[J]. International Journal of Impact Engineering, 2010, 37(3):242-249. DOI: 10.1016/j.ijimpeng.2009.09.003.
    [3] RAKVAG K G, BØRVIK T, WESTERMANN I, et al. An experimental study on the deformation and fracture modes of steel projectiles during impact[J]. Materials and Design, 2013, 51(5):242-256. DOI: 10.1016/j.matdes.2013.04.036.
    [4] RAKVAG K G, BØRVIK T, HOPPERSTAD O S, et al. Experimental and numerical studyon fragmentation of steel projectiles[C]//EPJ Web of Conferences. EDP Sciences, 2012: 04020. DOI: 10.1051/epjconf/20122604020.
    [5] JONES N. Structural impact[M]. Cambridge:Cambridge University Press, 1997:390-394.DOI: 10.1017/cbo9780511820625.023.
    [6] HIERMAIER S J. Structures under crash and impact[M]. Springer, 2008:1-10. DOI: 10.1007/978-0-387-73863-5.
    [7] 肖新科.双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D].哈尔滨: 哈尔滨工业大学, 2010: 2-10. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011278906.htm
    [8] 王琳, 王富耻, 王鲁, 等.贝氏体钢和35CrMnSi空心弹体侵彻金属靶板的比较研究[J].兵工学报, 2003, 24(3):419-423.DOI: 10.3321/j.issn:1000-1093.2003.03.032.

    WANG Lin, WANG Fuchi, WANG Lu, et al. Comparative study of penetration performances of steel projectile plates[J]. Acta Armamentarii, 2003, 24(3):419-423. DOI: 10.3321/j.issn:1000-1093.2003.03.032.
    [9] 陈小伟, 张方举, 徐艾民, 等.细长薄壁弹体的屈曲和靶体等效分析[J].爆炸与冲击, 2007, 27(4):296-305.DOI: 10.3321/j.issn:1001-1455.2007.04.002.

    CHEN Xiaowei, ZHANGFangju, XU Aimin, et al. Buckling analysis of earth penetrating warhead andequivalent conditions of targets[J]. Explosion and Shock Waves, 2007, 27(4):296-305.DOI: 10.3321/j.issn:1001-1455.2007.04.002.
    [10] 屈明, 陈小伟, 陈刚.细长薄壁弹体撞击钢靶屈曲的数值分析[J].爆炸与冲击, 2008, 28(2):116-123.DOI: 10.3321/j.issn:1001-1455.2008.02.004.

    QU Ming, CHEN Xiaowei, CHEN Gang. Numerical study on dynamic plastic buckling of deep penetrating projectile[J]. Explosion and Shock Waves, 2008, 28(2):116-123. DOI: 10.3321/j.issn:1001-1455.2008.02.004.
    [11] 陈小伟.动能深侵彻弹的力学设计(Ⅰ):侵彻/穿甲理论和弹体壁厚分析[J].爆炸与冲击, 2005, 25(6):499-505. doi: 10.3321/j.issn:1001-1455.2005.06.004

    CHEN Xiaowei. Mechanics of structural design of EPW (Ⅰ):The penetration/perforation theory and the analysis on the cartridge of projectile[J]. Explosion and Shock Waves, 2005, 25(6):499-505. doi: 10.3321/j.issn:1001-1455.2005.06.004
    [12] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48. DOI: 10.1016/0013-7944(85)90052-9.
    [13] GLANVILLE J P, FAIRLIE G, HAYHURST C, et al. Numerical simulation of fragmentation using AUTODYN-2D and 3D in explosive ordnance safety assessment[C]//The 6th International Explosive Ordnance Symposium. Canberra, Australia, 2003: 29-31.
    [14] 蒋建伟, 张谋, 门建兵, 等.PELE弹侵彻过程壳体膨胀破裂的数值模拟[J].计算力学学报, 2009, 26(4):568-572.DOI: 10.7511/jslx20094022.

    JIANG Jianwei, ZHANG Mou, MEN Jianbing, et al. Three dimensional simulation of expanding motion and fracture of ductile metal ring[J]. Chinese Journal of Computational Mechanics, 2009, 26(4):568-572. DOI: 10.7511/jslx20094022.
    [15] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials[C]//American Institute of Physics, 1994: 981-984. DOI: 10.1063/1.46199.
    [16] BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock[J]. International Journal of Impact Engineering, 2012, 41(2):16-25. DOI: 10.1016/j.ijimpeng.2011.08.010.
    [17] Century Dynamics. Autodyn theory manual revision 4.3[M]. Concord, California, USA: Century Dynamics Inc., 2005.22-30.
    [18] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures[C]//The International Symposium on Ballistics. Canada, 1993: 591-600. DOI: 10.1115/1.4004326.
    [19] 孙其然, 李芮宇, 赵亚运, 等.HJC模型模拟钢筋混凝土侵彻实验的参数研究[J].工程力学, 2016, 33(8):248-256.DOI: 10.6052/j.issn.1000-4750.2014.12.1094.

    SUN Qiran, LI Ruiyu, ZHAO Yayun, et al. Investigation on parameters of HJC model applied to simulate perforation experiment of reinforced concrete[J]. Engineering Mechanics, 2007, 33(8):248-256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  5820
  • HTML全文浏览量:  1652
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-03
  • 修回日期:  2017-12-11
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回