平头锥型回转体高速入水结构强度数值分析

黄志刚 孙铁志 杨碧野 张桂勇 宗智

黄志刚, 孙铁志, 杨碧野, 张桂勇, 宗智. 平头锥型回转体高速入水结构强度数值分析[J]. 爆炸与冲击, 2019, 39(4): 043201. doi: 10.11883/bzycj-2017-0330
引用本文: 黄志刚, 孙铁志, 杨碧野, 张桂勇, 宗智. 平头锥型回转体高速入水结构强度数值分析[J]. 爆炸与冲击, 2019, 39(4): 043201. doi: 10.11883/bzycj-2017-0330
HUANG Zhigang, SUN Tiezhi, YANG Biye, ZHANG Guiyong, ZONG Zhi. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry[J]. Explosion And Shock Waves, 2019, 39(4): 043201. doi: 10.11883/bzycj-2017-0330
Citation: HUANG Zhigang, SUN Tiezhi, YANG Biye, ZHANG Guiyong, ZONG Zhi. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry[J]. Explosion And Shock Waves, 2019, 39(4): 043201. doi: 10.11883/bzycj-2017-0330

平头锥型回转体高速入水结构强度数值分析

doi: 10.11883/bzycj-2017-0330
基金项目: 国家自然科学基金(51579042, 51639003, 51709042);国家“千人计划”青年项目(D1007001);中央高校基本科研业务费专项资金(DUT16ZD218, DUT17ZD311, DUT16RC(3)085)
详细信息
    作者简介:

    黄志刚(1992- ),男,硕士研究生,1059283140@qq.com

    通讯作者:

    张桂勇(1978- ),男,博士,教授,gyzhang@dlut.edu.cn

  • 中图分类号: O352

Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry

  • 摘要: 为探究回转体在高速入水过程中的结构强度,基于非线性有限元LS-DYNA软件中流固耦合任意拉格朗日-欧拉(arbitrary Lagrangian-Eulerian, ALE)方法,分析了不同壁厚的回转体以100 m/s的初速度入水过程中的冲击力特性和结构强度。结果表明:数值计算得到的入水冲击压强峰值和速度衰减曲线与相应的理论值吻合较好,从而验证了数值方法的有效性;入水冲击载荷峰值出现在结构入水瞬间,结构入水后冲击载荷急剧变小且微小震荡;回转体的结构形式对其在高速入水过程中的结构强度有重要影响,尤其回转体头部厚度影响回转体结构强度,当回转体头部厚度为8 mm、后体壁厚大于2.5 mm时,可以保证回转体强度要求。
  • 图  1  计算域

    Figure  1.  Computational domain

    图  2  回转体几何模型

    Figure  2.  The geometrical model for a revolution body

    图  3  回转体头部中心区域压强曲线

    Figure  3.  Pressure intensity curve in the central head region of the revolution body

    图  4  回转体速度衰减曲线

    Figure  4.  Velocity attenuation of the revolution body over time

    图  5  流-构耦合力曲线

    Figure  5.  Fluid-structure interaction force varying with time

    图  6  t=1.1 ms时回转体的应力分布

    Figure  6.  Stress distribution in the revolution body at t=1.1 ms

    图  7  t=3.0 ms时回转体的应力分布

    Figure  7.  Stress distribution in the revolution body at t=3.0 ms

    图  8  回转体头部边缘单元应变曲线

    Figure  8.  Strain-time curve of the edge element for the head of the revolution body

    图  9  回转体头部边缘单元等效应力曲线

    Figure  9.  Equivalent stress-time curve of the edge element for the head of the revolution body

    图  10  t=0.89 ms时刻回转体的应力分布

    Figure  10.  Stress distribution in the revolution body at t=0.89 ms

    图  11  t=2.00 ms回转体应力图

    Figure  11.  Stress distribution in the revolution body at t=2.00 ms

    图  12  回转体头部边缘及中心单元应变随时间的变化

    Figure  12.  Strain-time curves of the edge and central elements for the head of the revolution body

    图  13  回转体头部边缘单元等效应力曲线

    Figure  13.  Equivalent stress-time curve of the edge element for the head of the revolution body

    图  14  回转体头部中心单元等效应力曲线

    Figure  14.  Equivalent stress-time curve of the central element for the head of the revolution body

  • [1] 王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07

    WANG Yonghu, SHI Xiuhua. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07
    [2] WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography: paper II [J]. Philosophical Transactions of the Royal Society of London, 1900, 194: 175–199. DOI: 10.1098/rsta.1897.0005.
    [3] VON KARMAN T. The impact on seaplane floats during landing: 20140804-120956389 [R]. 1929.
    [4] WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces [J]. ZAMM: Journal of Applied Mathematics and Mechanics, 1932, 12(4): 193–215. doi: 10.1002/(ISSN)1521-4001
    [5] MAYO W L. Hydrodynamic impact of a system with a single elastic mode: I: theory and generalized solution with an application to an elastic airframe: NACA-report-1074 [R]. Technical Report Archive & Image Library, 1952.
    [6] MAY A. Review of water-entry theory and data [J]. Journal of Hydronautics, 1970, 4(4): 140–142. DOI: 10.2514/3.62851.
    [7] ANGHILERI M, SPIZZICA A. Experimental validation of finite element models for water impacts [C] // Proceedings of the Second International Crash Users Seminar. Cranfield, UK, 1995.
    [8] FALTINSEN O M, ZHAO R. Water entry of ship sections and axisymmetric bodies: AGARD report, 827 [R]. Neuilly-sur-Seine, WaterKiev, Ukraine: Advisory Group for Aerospace Research and Development, 1997: 24−1−24−11.
    [9] KOROBKIN A A, WU G X. Impact on a floating circular cylinder [J]. Proceedings: Mathematical, Physical and Engineering Sciences, 2000, 456(2002): 2489–2514. DOI: 10.1098/rspa.2000.0622.
    [10] DONGUY B, PESEUX B, GORNET L, et al. Three-dimensional hydro-elastic water entry: preliminary results [C] // The Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: International Society of Offshore and Polar Engineers, 2001: 324−330.
    [11] 郑金伟, 宗智. 三维刚体椭圆头结构高速倾斜入水冲击模拟 [J]. 船海工程, 2012, 41(3): 7–9 doi: 10.3963/j.issn.1671-7953.2012.03.003

    ZHENG Jinwei, ZONG Zhi. 3-dimensional numerical simulation of rigid elliptic structure inclined water-entry at high speed [J]. Ship and Ocean Engineering, 2012, 41(3): 7–9 doi: 10.3963/j.issn.1671-7953.2012.03.003
    [12] 施红辉, 高见卓也, 伊藤基之. 钝体入水时的水下声场的测量 [J]. 流体力学实验与测量, 2001, 15(2): 78–84 doi: 10.3969/j.issn.1672-9897.2001.02.011

    SHI Honghui, TAKAMI Takuya, ITOH Motoyuki. Measurement of the underwater acoustic field in water entry of blunt body [J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(2): 78–84 doi: 10.3969/j.issn.1672-9897.2001.02.011
    [13] SHI Honghui, KUME Makoto. Underwater acoustics and cavitating flow of water entry [J]. Acta Mechanica Sinica, 2004, 20(4): 374–382. DOI: 10.1007/bf02489375.
    [14] 王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究 [J]. 兵工学报, 2014, 35(12): 1998–2002 doi: 10.3969/j.issn.1000-1093.2014.12.010

    WANG Yun, YUAN Xulong, LYU Ce. Experimental research on curved trajectory of high-speed water-entry missile [J]. Acta Armamentarii, 2014, 35(12): 1998–2002 doi: 10.3969/j.issn.1000-1093.2014.12.010
    [15] 潘光, 杨悝. 空投鱼雷入水载荷 [J]. 爆炸与冲击, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06

    PAN Guang, YANG Kui. Impact force encountered by water-entry airborne torpedo [J]. Explosion and Shock Waves, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06
    [16] 黄凯, 乐述文. 不同头型弹体模型入水现象的实验研究 [J]. 物理实验, 2016, 36(5): 13–18 doi: 10.3969/j.issn.1005-4642.2016.05.003

    HUANG Kai, YUE Shuwen. Experimental research on the behavior of water-entry of different head shape projectile models [J]. Physics Experimentation, 2016, 36(5): 13–18 doi: 10.3969/j.issn.1005-4642.2016.05.003
    [17] 李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性 [J]. 哈尔滨工业大学学报, 2017, 49(4): 131–136

    LI Jiachuan, WEI Yingjie, WANG Cong, et al. Water entry trajectory characteristics of high-speed projectile with various turbulent angular velocity [J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131–136
    [18] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06

    ZHANG Wei, GUO Zitao, XIAO Xinke, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06
    [19] 郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07

    GUO Zitao, ZHANG Wei, GUO Zhao, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07
    [20] 马庆鹏, 何春涛, 王聪, 等. 球体垂直入水空泡实验研究 [J]. 爆炸与冲击, 2014, 34(2): 174–180. DOI: 10.11883/1001-1455(2014)02-0174-07

    MA Qingpeng, HE Chuntao, WANG Cong, et al. Experimental investigation on vertical water-entry of sphere [J]. Explosion and Shock Waves, 2014, 34(2): 174–180. DOI: 10.11883/1001-1455(2014)02-0174-07
    [21] 王珂, 王自力, 王志东, 等. 弹性回转体入水砰击载荷预报 [J]. 船海工程, 2011, 40(5): 20–22 doi: 10.3963/j.issn.1671-7953.2011.05.006

    WANG Ke, WANG Zili, WANG Zhidong, et al. Prediction of the slamming pressure on a 3-D elastic axisymmetric structure [J]. Ship and Ocean Engineering, 2011, 40(5): 20–22 doi: 10.3963/j.issn.1671-7953.2011.05.006
  • 加载中
图(14)
计量
  • 文章访问数:  4542
  • HTML全文浏览量:  1852
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-08
  • 修回日期:  2018-01-10
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回