外爆条件下冲击波与组合壳结构的相互作用

高康华 李斌 刘宇都 孙松

高康华, 李斌, 刘宇都, 孙松. 外爆条件下冲击波与组合壳结构的相互作用[J]. 爆炸与冲击, 2019, 39(5): 052101. doi: 10.11883/bzycj-2017-0370
引用本文: 高康华, 李斌, 刘宇都, 孙松. 外爆条件下冲击波与组合壳结构的相互作用[J]. 爆炸与冲击, 2019, 39(5): 052101. doi: 10.11883/bzycj-2017-0370
GAO Kanghua, LI Bin, LIU Yudu, SUN Song. Interaction of a shock wave with a composite shell structure under an external explosion[J]. Explosion And Shock Waves, 2019, 39(5): 052101. doi: 10.11883/bzycj-2017-0370
Citation: GAO Kanghua, LI Bin, LIU Yudu, SUN Song. Interaction of a shock wave with a composite shell structure under an external explosion[J]. Explosion And Shock Waves, 2019, 39(5): 052101. doi: 10.11883/bzycj-2017-0370

外爆条件下冲击波与组合壳结构的相互作用

doi: 10.11883/bzycj-2017-0370
基金项目: 国家自然科学基金(51308542)
详细信息
    作者简介:

    高康华(1983- ),男,博士,工程师,weikang515@163.com

    通讯作者:

    李 斌(1984- ),男,博士,讲师,wrilber@sina.com

  • 中图分类号: O383

Interaction of a shock wave with a composite shell structure under an external explosion

  • 摘要: 为研究冲击波与组合壳结构的相互作用,针对带防护墙的地面直立钢筋混凝土组合壳结构,考虑结构安置于地面和周边围土2种工况,开展结构爆炸实验,分析了结构外表面冲击波荷载分布及振动特性。实验结果表明:冲击波作用下,结构外表面爆炸荷载主要产生在冲击波绕射过程,确定荷载时应考虑冲击波压力在绕射传播过程中的自然衰减;整个结构中与冲击波最早接触的构件先产生振动,而后由于结构整体参与使得振动频率降低,振动幅值减小;结构周边围土可降低防护墙迎爆部分构件的振动频率,减小防护墙和组合壳的振动幅值。
  • 图  1  实验结构详图 (单位:mm)

    Figure  1.  Structure detail drawing (unit in mm)

    图  2  模型结构爆炸加载实验图

    Figure  2.  Model structures under explosion loadings

    图  3  爆源形式

    Figure  3.  Explosion source

    图  4  压力传感器的分布 (单位:mm)

    Figure  4.  Distribution diagrams of pressure sensors (unit in mm)

    图  5  加速度传感器的分布图 (单位:mm)

    Figure  5.  Distribution diagrams of acceleration sensors (unit in mm)

    图  6  应变传感器分布示意图 (单位:mm)

    Figure  6.  Distribution diagrams of strain sensors (unit in mm)

    图  7  H=1.1 m时防护墙表面各点的压力

    Figure  7.  Overpressure-time curves at various pressure test points on the surface of the protecting wall when H=1.1 m

    图  8  L=4.8 m,H=1.1 m时,柱壳表面各点的压力

    Figure  8.  Overpressure-time curves at various pressure test points on the surface of the cylindrical shell when L=4.8 m and H=1.1 m

    图  9  冲击波与柱壳结构相互作用示意图

    Figure  9.  The interaction between the shock wave and the cylindrical shell structure

    图  10  模型结构迎爆面反射压力对比

    Figure  10.  Reflected pressure of the blast side on the model structure

    图  11  防护墙迎爆面荷载对比

    Figure  11.  Explosion pressure of the blast side on the protecting wall

    图  12  各测点的加速度时程曲线 (Q=160 g,工况1)

    Figure  12.  Acceleration-time curves at various test points (Q=160 g, the first condition)

    图  13  各测点的加速度时程曲线 (Q=300 g,工况1)

    Figure  13.  Acceleration-time curves at various test points (Q=300 g, the first condition)

    图  14  各测点的加速度时程曲线(Q=300 g,工况2)

    Figure  14.  Acceleration-time curves at various test points (Q=300 g, the second condition)

    图  15  各测点的加速度时程曲线(Q=450 g,工况2)

    Figure  15.  Acceleration-time curves at various test points (Q=450 g, the second condition)

    图  16  2种工况下各测点的加速度时程曲线(Q=300 g)

    Figure  16.  Acceleration-time curves at various test points under two experimental conditions (Q=300 g)

    图  17  不同条件下测点3的加速度时程曲线

    Figure  17.  Acceleration-time curves at test point 3 under different experimental conditions

    图  18  防护墙各测点的应变时程曲线 (Q=160 g,L=4.8 m,工况1)

    Figure  18.  Strain-time curves at various test points of the protecting wall (Q=160 g, L=4.8 m, the first condition)

    图  19  圆形柱壳底部各测点的应变时程曲线

    Figure  19.  Strain-time curves at various test points on the base of the circular cylindrical shell

    表  1  爆炸实验条件

    Table  1.   Explosion experiment conditions

    实验编号 工况 Q/g L/m H/m 压力测点编号 加速度测点编号 应变测点编号
    1 1 160 4.8 1.1 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 4, 5, 6 1, 2, 3, 4, 5, 6, 7, 9, 10
    2 1 160 4.8 1.1 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 4, 5, 6 1, 2, 3, 4, 5, 6, 7, 9, 10
    3 1 300 6.3 1.1 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 4, 5, 6 1, 2, 3, 4, 5, 6, 7, 9, 10
    4 1 160 4.8 1.1 1, 4, 6, 7, 8, 9, 10, 11 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    5 1 300 4.8 1.1 2, 4, 6, 7, 8, 9, 10, 11 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    6 1 300 4.8 1.1 2, 4, 6, 7, 8, 9, 10, 11 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    7 2 300 4.8 1.1 7, 8, 9, 10, 11 1, 2, 3, 4, 5 4, 5, 9, 10
    8 2 450 4.8 1.1 7, 8, 9, 10, 11 1, 2, 3, 4, 5 4, 5, 9, 10
    9 2 450 4.8 1.1 7, 8, 9, 10, 11 1, 2, 3, 4, 5 4, 5, 9, 10
    下载: 导出CSV
  • [1] 吴昊, 方秦, 龚自明, 等. 冲击爆炸作用对核电站安全壳毁伤效应研究的进展 [J]. 防灾减灾工程学报, 2012, 32(3): 384–392.

    WU Hao, FANG Qin, GONG Ziming, et al. State of arts of impact and blast effects on the NPPC [J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(3): 384–392.
    [2] 葛庆子, 翁大根, 张瑞甫. 特大型LNG储罐等壳体结构抗爆研究综述 [J]. 振动与冲击, 2013, 32(11): 89–94. DOI: 10.3969/j.issn.1000-3835.2013.11.019.

    GE Qingzi, WENG Dagen, ZHANG Ruifu. Reviews of antiknock study on extra-large LNG storage tank and other shell structures [J]. Journal of Vibration and Shock, 2013, 32(11): 89–94. DOI: 10.3969/j.issn.1000-3835.2013.11.019.
    [3] 郑文凯. 大型商用飞机撞击核电站屏蔽厂房的荷载研究 [D]. 北京: 清华大学, 2013: 1-91.
    [4] 吴婧姝, 张兴斌, 潘蓉. 大型商用飞机撞击核安全壳破坏效应的数值模拟 [J]. 工业建筑, 2016, 46(10): 28–32. DOI: 10.13204/j.gyjz201610007.

    WU Jingshu, ZHANG Xingbin, PAN Rong. Numerical simulation of response and damage of nuclear containment under large commercial aircraft impact [J]. Industrial Construction, 2016, 46(10): 28–32. DOI: 10.13204/j.gyjz201610007.
    [5] 赵春风, 陈健云. 内爆荷载作用下钢筋混凝土安全壳的非线性响应分析 [J]. 爆炸与冲击, 2013, 33(6): 667–672. DOI: 10.11883/1001-1455(2013)06-0667-06.

    ZHAO Chunfeng, CHEN Jianyun. Dynamic responses of reinforced concrete containment subjected to internal blast loading [J]. Explosion and Shock Waves, 2013, 33(6): 667–672. DOI: 10.11883/1001-1455(2013)06-0667-06.
    [6] 刘云飞, 王天运, 贺锋, 等. 核反应堆预应力钢筋混凝土安全壳内爆炸数值分析 [J]. 工程力学, 2007, 24(8): 168–172. DOI: 10.3969/j.issn.1000-4750.2007.08.030.

    LIU Yunfei, WANG Tianyun, HE Feng, et al. Numerical simulation for pre-stress concrete containment under internal explosive loading [J]. Engineering Mechanics, 2007, 24(8): 168–172. DOI: 10.3969/j.issn.1000-4750.2007.08.030.
    [7] 张娟花, 陈鹏. CPR1000+核电厂堆腔注水蒸汽爆炸及安全壳结构响应分析 [C] // 中国核科学技术进展报告: 第四卷: 中国核学会2015年学术年会论文集. 北京: 中国原子能出版社, 2016: 1−6.
    [8] 杨帆, KUDRIAKOV S, 余红星, 等. 严重事故下安全壳内氢气爆燃风险数值模拟研究 [J]. 核动力工程, 2017, 38(4): 159–162. DOI: 10.13832/j.jnpe.2017.04.0159.

    YANG Fan, KUDRIAKOV S, YU Hongxing, et al. Numerical simulation study on containment hydrogen deflagration risk under severe accident [J]. Nuclear Power Engineering, 2017, 38(4): 159–162. DOI: 10.13832/j.jnpe.2017.04.0159.
    [9] PANDEY A K, KUMAR R, PAUL D K, et al. Non-linear response of reinforced concrete containment structure under blast loading [J]. Nuclear Engineering and Design, 2006, 236(9): 993–1002. DOI: 10.1016/j.nucengdes.2005.09.015.
    [10] 余爱萍, 王远功, 翁智远. 冲击波对核反应堆安全壳的动力响应研究 [J]. 爆炸与冲击, 1992, 12(3): 219–227.

    YU Aiping, WANG Yuangong, WENG Zhiyuan. Transient response of a containment structure of nuclear reactor subjected to a blast wave [J]. Explosion and Shock Waves, 1992, 12(3): 219–227.
    [11] 余爱萍, 王远功. 核反应堆安全壳在冲击荷载作用下的动力响应研究 [J]. 振动与冲击, 1990, 35(3): 52–59. DOI: 10.13465/j.cnki.jvs.1990.03.010.

    YU Aiping, WANG Yuangong. Transient response of a containment structure of nuclear reactor subjected to impact load [J]. Journal of Vibration and Shock, 1990, 35(3): 52–59. DOI: 10.13465/j.cnki.jvs.1990.03.010.
    [12] 王天运, 任辉启, 刘水江, 等. 爆炸冲击波作用下核电站安全壳动力分析模型 [J]. 武汉理工大学学报, 2003, 25(9): 46–48. DOI: 10.3321/j.issn.1671-4431.2003.09.014.

    WANG Tianyun, REN Huiqi, LIU Shuijiang, et al. Dynamic analysis model for the containment vessel of the nuclear station under blast shock wave [J]. Journal of Wuhan University of Technology, 2003, 25(9): 46–48. DOI: 10.3321/j.issn.1671-4431.2003.09.014.
    [13] 王天运, 任辉启, 刘立胜. 常规装药爆炸荷载作用下核电站安全壳的动力响应分析 [J]. 工程建设与设计, 2005, 4: 20–23. DOI: 10.3969/j.issn.1007-9467.2005.04.007.

    WANG Tianyun, REN Huiqi, LIU Lisheng. Nuclear power station concrete containment dynamical response analysis under blast load of general bomb [J]. Construction and Design for Project, 2005, 4: 20–23. DOI: 10.3969/j.issn.1007-9467.2005.04.007.
    [14] 王天运, 高缨, 申祖武. 有限体积元法在安全壳抗爆数值模拟中的应用 [J]. 工程建设与设计, 2006(11): 6–9. DOI: 10.3969/j.issn.1007-9467.2006.11.002.

    WANG Tianyun, GAO Ying, SHEN Zuwu. Finite volume element application in containment shell numerical simulation under blast shock wave [J]. Construction and Design for Project, 2006(11): 6–9. DOI: 10.3969/j.issn.1007-9467.2006.11.002.
    [15] 王天运, 任辉启, 张力军, 等. 爆炸地冲击作用下某核电站安全壳的破坏形式 [J]. 工程力学, 2003(S1): 397–402.

    WANG Tianyun, REN Huiqi, ZHANG Lijun, et al. The failure effect of nuclear reactor under ground shock wave [J]. Engineering Mechanics, 2003(S1): 397–402.
    [16] 王天运, 任辉启, 张力军. 安全壳钢筋混凝土简支墙抗爆性能分析 [J]. 郑州大学学报(工学版), 2004, 25(2): 39–43. doi: 10.3969/j.issn.1671-6833.2004.02.010

    WANG Tianyun, REN Huiqi, ZHANG Lijun. Nonlinear distribution of seismic active earth pressure on rigid retaining walls [J]. Journal of Zhengzhou University (Engineering Science), 2004, 25(2): 39–43. doi: 10.3969/j.issn.1671-6833.2004.02.010
    [17] 申祖武, 刘国强, 王天运, 等. 炸药触地爆炸后核电站安全壳基底振动响应分析 [J]. 岩土力学, 2009, 30(8): 2540–2544. DOI: 10.16285/j.rsm.2009.08.061.

    SHEN Zuwu, LIU Guoqiang, WANG Tianyun, et al. Analysis of vibration response of containment foundation in nuclear power station after munitions bombing [J]. Rock and Soil Mechanics, 2009, 30(8): 2540–2544. DOI: 10.16285/j.rsm.2009.08.061.
    [18] HUANG Wensheng, ONODERA O, TAKAYAMA K. Unsteady interaction of shock wave diffracting around a circular cylinder in air [J]. Acta Mechanica Sinica, 1991, 7(4): 295–299. doi: 10.1007/BF02486736
    [19] DRIKAKIS D, OFENGEIM D, TIMOFEEV E, et al. Computation of non-stationary shock-wave/cylinder interaction using adaptive-grid methods [J]. Journal of Fluids and Structures, 1997, 11: 665–691. DOI: 10.1006/jfls.1997.0101.
    [20] LANGLET A, SOULI M, AQUELET N, et al. Air blast reflecting on a rigid cylinder: simulation and reduced scale experiments [J]. Shock Waves, 2015, 25(1): 47–61. DOI: 10.1007/s00193-014-0531-6.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  5502
  • HTML全文浏览量:  1963
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-16
  • 修回日期:  2018-01-24
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回