爆炸冲击作用下预制节段拼装桥墩的动态响应与损伤分析

杨旭 张于晔 张宁

杨旭, 张于晔, 张宁. 爆炸冲击作用下预制节段拼装桥墩的动态响应与损伤分析[J]. 爆炸与冲击, 2019, 39(3): 035104. doi: 10.11883/bzycj-2017-0429
引用本文: 杨旭, 张于晔, 张宁. 爆炸冲击作用下预制节段拼装桥墩的动态响应与损伤分析[J]. 爆炸与冲击, 2019, 39(3): 035104. doi: 10.11883/bzycj-2017-0429
YANG Xu, ZHANG Yuye, ZHANG Ning. Dynamic response and damage analysis of precast segmental piers under blast impact[J]. Explosion And Shock Waves, 2019, 39(3): 035104. doi: 10.11883/bzycj-2017-0429
Citation: YANG Xu, ZHANG Yuye, ZHANG Ning. Dynamic response and damage analysis of precast segmental piers under blast impact[J]. Explosion And Shock Waves, 2019, 39(3): 035104. doi: 10.11883/bzycj-2017-0429

爆炸冲击作用下预制节段拼装桥墩的动态响应与损伤分析

doi: 10.11883/bzycj-2017-0429
基金项目: 国家自然科学基金(51508276);国家山区公路工程技术研究中心开放基金(GSGZJ-2017-02);江苏省研究生科研与实践创新计划(KYCX17-0371)
详细信息
    作者简介:

    杨 旭(1995— ),男,硕士研究生,yangxu@njust.edu.cn

    通讯作者:

    张于晔(1986— ),男,博士,副教授,zyy@njust.edu.cn

  • 中图分类号: O383

Dynamic response and damage analysis of precast segmental piers under blast impact

  • 摘要: 为研究爆炸冲击作用下预制节段拼装桥墩的动态响应与损伤,采用ANSYS/LS-DYNA建立圆形截面预制节段拼装桥墩受爆的三维实体分离式模型。通过与已有实验结果的对比分析,验证了该模拟方法的可靠性。基于该模型,研究了爆炸冲击作用下节段长细比、初始预应力水平及桥墩体系对圆形截面预制拼装桥墩动态响应与损伤的影响规律。结果表明:减小节段长细比使墩身由剪切破坏逐渐变为节段间相对位移,并减小墩身的整体侧向位移;提高初始预应力水平可以在一定程度上提高桥墩的抗爆性能;爆炸冲击作用下混合体系桥墩兼具完全节段和整体现浇桥墩的破坏特征。
  • 图  1  结构原型图

    Figure  1.  Structure prototype

    图  2  有限元模型

    Figure  2.  Finite element model

    图  3  实验布置

    Figure  3.  Experimental set up

    图  4  验证有限元模型

    Figure  4.  Finite element model of verification model

    图  5  柱中位置位移时程

    Figure  5.  History of displacement in the middle of the column

    图  6  试件U2B的破坏状态

    Figure  6.  Damage of specimen U2B

    图  7  墩底位移时程曲线

    Figure  7.  Time history of displacement in pier bottom

    图  8  不同长细比桥墩的最终位移

    Figure  8.  Final displacement of piers with different slender ratio

    图  9  不同长细比桥墩的最终破坏及局部放大图

    Figure  9.  Final damage of piers with different slender ratios and their partial

    图  10  相对位移的耗能(Ec)曲线

    Figure  10.  Energy consumption (Ec) curve of inter-segment displacement

    图  11  迎爆面中心位移-时间曲线

    Figure  11.  Time history of displacement in the center of blast surface

    图  12  不同预应力水平时桥墩整体位移曲线

    Figure  12.  Lateral displacement of piers with different initial post-tensioning level

    图  13  混合体系桥墩示意图

    Figure  13.  Sketch of hybrid system pier

    图  14  距墩底75 cm处节段位移时程

    Figure  14.  Displacement at 75 cm from the pier bottom

    图  15  不同体系桥墩整体位移

    Figure  15.  Pier displacement of different system

    图  16  不同体系桥墩整体破坏

    Figure  16.  Overall damage of piers with different system

    表  1  空气及TNT炸药材料模型及主要参数

    Table  1.   Material model and main parameters of air and TNT explosive

    材料材料定义状态方程主要参数
    空气*MAT_NULL*EOS_LINEAR_
    POLYNOMINAL
    ρ0/(kg·m−3C0~C3, C6C4, C5E0/(μJ·m−3)
    1.300.42.5
    TNT炸药*MAT_HIGH_EXPLOSIVE_
    BURN
    *EOS_JWLρ0/(kg·m−3D/(km·s−1)pCJ/GPaA/GPaB/GPa
    1.6546.9321371.23.231
     注:ρ0为材料密度;E0为空气的单位体积初始内能;D为炸药爆速;pCJ为炸药爆压;C0C6为状态方程系数;AB为实验确定常数。
    下载: 导出CSV

    表  2  钢筋材料主要参数

    Table  2.   Main material parameters of steel

    ρ0/(kg·m−3)E/GPaνσy/MPaηN/GPaCP
    7 8502000.25502.1405
     注:E为弹性模型,ν为泊松比,σy为屈服强度,ηN为切线模量,CP为Cowper-Symonds应变率参数。
    下载: 导出CSV

    表  3  C50混凝土主要参数

    Table  3.   Main parameters of C50 concrete

    ρ0/(kg·m−3)G/GPaFC/MPaT/MPapC/GPaεC
    2.31433.855050.160.001
     注:G为剪切模量,FC为准静态单轴抗压强度,T为抗拉强度,PC为破碎压力,εC为破碎体积应变。
    下载: 导出CSV

    表  4  计算工况

    Table  4.   Calculation cases

    工况墩身直径/m节段长度/mλ初始预应力水平桥墩体系
    10.53610%S
    20.51210%S
    30.50.751.510%S
    40.50.5110%S
    50.40.751.87510%S
    60.60.751.2510%S
    70.50.751.55%S
    80.50.751.515%S
    90.50.515%S
    100.50.5115%S
    110.50.75M
    120.50.7510%H
     注:S表示预制节段拼装桥墩,M表示整体现浇桥墩,H表示混合体系桥墩。
    下载: 导出CSV
  • [1] 朱劲松, 邢扬. 爆炸荷载作用下城市桥梁动态响应及损伤过程分析 [J]. 天津大学报(自然科学版), 2015, 48(6): 510–519 doi: 10.11784/tdxbz201307078

    ZHU Jinsong, XING Yang. Dynamic response and damage process analysis of urban bridge subjected to blast load [J]. Journal of Tianjin University (Science and Technology), 2015, 48(6): 510–519 doi: 10.11784/tdxbz201307078
    [2] TANG E K C, HAO H. Numerical simulation of a cable-stayed bridge response to blast loads, part I: model development and response calculations [J]. Engineering Structures, 2010, 32(10): 3180–3192. doi: 10.1016/j.engstruct.2010.06.007
    [3] 张宇, 李国强, 陈可鹏, 等. 桥梁结构抗爆安全评估研究进展 [J]. 爆炸与冲击, 2016, 36(1): 135–144 doi: 10.11883/1001-1455(2016)01-0135-10

    ZHANG Yu, LI Guoqiang, CHEN Kepeng, et al. Research advances of safety assessment of bridges under blast load [J]. Explosion and Shock Waves, 2016, 36(1): 135–144 doi: 10.11883/1001-1455(2016)01-0135-10
    [4] SUTHAR K N. The effects of dead load, live and blast loads on a suspension bridge [D]. Maryland: University of Maryland, 2007.
    [5] WILLIAMS G, HOLLAND C, WILLIAMSON E, et al. Blast-resistant highway bridges: design and detailing guidelines [J]. Structures under Shock and Impact, 2008, 98: 75–83.
    [6] 吴伟胜, 王仁贵, 王梓夫. 杭州湾跨海大桥高墩区引桥总体及上部结构设计 [C]// 中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议论文集. 杭州, 2005: 86–92.
    [7] 过震文, 黄少文, 邵长宇. 预制拼装技术在上海长江大桥中的应用 [J]. 世界桥梁, 2009(S1): 22–26

    GUO Zhenwen, HUANG Shaowen, SHAO Changyu. Application of precasting and assembling techniques to construction of Shanghai Changjiang River Bridge [J]. World bridge, 2009(S1): 22–26
    [8] 王震, 王景全. 预应力节段预制拼装桥墩抗震性能研究综述 [J]. 建筑科学与工程学报, 2016, 33(6): 88–97 doi: 10.3969/j.issn.1673-2049.2016.06.012

    WANG Zhen, WANG Jingquan. Review of seismic performance of prestressed segmental precast and assembled piers [J]. Journal of Architecture and Civil Engineering, 2016, 33(6): 88–97 doi: 10.3969/j.issn.1673-2049.2016.06.012
    [9] BU Z Y, OU Y C, SONG J W, et al. Cyclic loading test of unbonded and bonded posttensioned precast segmental bridge columns with circular section [J]. Journal of Bridge Engineering, 2016, 21(2): 1–18. doi: 10.1061/(ASCE)BE.1943-5592.0000807
    [10] ZHANG X H, HAO H, LI C. Experimental investigation of the response of precast segmental columns subjected to impact loading [J]. International Journal of Impact Engineering, 2016, 95: 105–124. doi: 10.1016/j.ijimpeng.2016.05.005
    [11] RUTNER M, ASTANEH-ASL A, SON J. Protection of bridge piers against blast [C]// Proceedings of the 6th Japanese-German Bridge Symposium. Munich, Germany, 2005.
    [12] MICHAEL B, MYLES P, MARC E. PEER Structural performance database user’s manual [M]. Berkeley: University of California, 2006.
    [13] 中华人民共和国交通部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG D62—2004 [S]. 北京: 人民交通出版社, 2004.
    [14] 杨军, 杨国梁, 张光雄. 建筑结构爆破拆除数值模拟[M]. 北京: 科学出版社, 2012.
    [15] HAO H, HAO Y F, LI J. Review of the current practices in blast resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1193–1223. doi: 10.1177/1369433216656430
    [16] WINGET DG, MARCHAND KA, WILLIAMSON EB. Analysis and design of critical bridges subjected to blast loads [J]. Journal of Structural Engineering, 2005, 131(8): 1243–1255. doi: 10.1061/(ASCE)0733-9445(2005)131:8(1243)
    [17] SHA Y Y, HAO H. Laboratory tests and numerical simulations of barge impact on circular reinforced concrete piers [J]. Engineering Structures, 2013, 46(1): 593–605.
    [18] HAO H, LI J, WU C. Numerical study of precast segmental column under blast loads [J]. Engineering Structures, 2017, 134: 125–137. doi: 10.1016/j.engstruct.2016.12.028
    [19] 中华人民共和国住房和城乡建设部. 装配式混凝土结构技术规程: JGJ 1—2014 [S]. 北京: 人民交通出版社, 2014.
    [20] Comite Euro-International du Beton. Concrete structures under impact and impulsive loading: CEB Bulletin 187 [S]. Switzerland: Federal Institute of Technology Lausanne, 1990.
    [21] MALVAR L J, ROSS C A. A review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735–739.
    [22] HAO Y, HAO H. Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings [J]. Engineering Structures, 2014, 73: 24–38. doi: 10.1016/j.engstruct.2014.04.042
    [23] XU J C, WU C Q, XIANG H B, et al. Behavior of ultra-high performance fiber reinforced concrete columns subjected to blast loading [J]. Engineering Structures, 2016, 118: 97–107. doi: 10.1016/j.engstruct.2016.03.048
    [24] ZHANG Y Y, TENG G. Numerical analysis on seismic performance of hybrid precast segmental bridge columns [C]// LENNART E, JOHAN J. Challenges in Design and Construction of an Innovative and Sustainable Built Environment. Stockholm: IABSE Congress, 2016: 1100−1107.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  6041
  • HTML全文浏览量:  2036
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-24
  • 修回日期:  2018-05-14
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回