冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究

熊玮 张先锋 陈亚旭 丁力 包阔 陈海华

熊玮, 张先锋, 陈亚旭, 丁力, 包阔, 陈海华. 冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究[J]. 爆炸与冲击, 2019, 39(5): 055301. doi: 10.11883/bzycj-2017-0451
引用本文: 熊玮, 张先锋, 陈亚旭, 丁力, 包阔, 陈海华. 冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究[J]. 爆炸与冲击, 2019, 39(5): 055301. doi: 10.11883/bzycj-2017-0451
XIONG Wei, ZHANG Xianfeng, CHEN Yaxu, DING Li, BAO Kuo, CHEN Haihua. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites[J]. Explosion And Shock Waves, 2019, 39(5): 055301. doi: 10.11883/bzycj-2017-0451
Citation: XIONG Wei, ZHANG Xianfeng, CHEN Yaxu, DING Li, BAO Kuo, CHEN Haihua. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites[J]. Explosion And Shock Waves, 2019, 39(5): 055301. doi: 10.11883/bzycj-2017-0451

冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究

doi: 10.11883/bzycj-2017-0451
基金项目: 中组部青年拔尖人才支持计划(2014);中央高校基本科研业务费专项(30916011305);江苏省研究生科研创新计划项目(KYCX18_0460,KYCX18_0476)
详细信息
    作者简介:

    熊 玮(1991- ),女,博士研究生,xiong_xiongwei@sina.cn

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O382

Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites

  • 摘要: 基于冷轧成型工艺,采用不同的轧制道次制备Al/Ni多层复合材料。开展了Al/Ni多层复合材料准静态压缩和准密闭二次撞击反应实验,对它的力学性能和冲击释能特性进行测试。同时,通过扫描电镜得到了材料的细观结构特性,分析了Al/Ni多层复合材料细观特性对宏观力/化学行为的影响机制。结果表明,基于冷轧技术制备的Al/Ni多层复合材料比粉末压制而成的Al/Ni复合材料塑性更强,材料的抗压强度总体随冷轧次数的增加呈上升趋势。另外,冷轧3~5道次的Al/Ni多层复合材料的准密闭二次撞击反应实验表明,材料在相同的撞击速度(800~1 500 m/s)下释放的化学能随着轧制道次的增加而逐渐降低。
  • 图  1  不同冷轧道次的Al/Ni多层复合材料细观结构

    Figure  1.  Microstructures of Al/Ni multi-layered composites manufactured by cold rolling with 2–5 passes

    图  2  Al和Ni两相界面处的SEM照片

    Figure  2.  AI/Ni interface microstructures reflected from SEM photographs

    图  3  不同冷轧道次的Al/Ni多层复合材料准静态压缩应力应变曲线

    Figure  3.  True stress-strain curves of Al/Ni multi-layered composites under quasi-static compression

    图  4  Al/Ni多层复合材料的准静态压缩实验结果

    Figure  4.  Typical pictures for quasi-static compressive cracks of Al/Ni multi-layered composites

    图  5  准密闭二次撞击反应实验布局图[9]

    Figure  5.  An experimental layout of double impact initiation experiment

    图  6  典型的容器内破片冲击反应的照片

    Figure  6.  Typical photographs of impact reaction in experimental chamber

    图  7  典型的压力曲线

    Figure  7.  Typical pressure curves

    图  8  Al/Ni多层复合材料的比化学能

    Figure  8.  Specific chemical energy for Al/Ni multi-layered composites

    图  9  Al/Ni多层复合材料的准静态压力曲线的上升速率

    Figure  9.  Increase rate of quasi-static pressure for Al/Ni multi-layered composites

    表  1  准密闭二次撞击反应实验结果

    Table  1.   Experimental results of double impact initiation

    Al/Ni材料类型m/gv/(m·s−1)Δpm/MPaQ/kJEk/kJer/(kJ·g−1)pm $ t_{\rm m}^{-1}$)/(MPa·s−1)
    冷轧3道次2.94 8410.0110.970.800.060.42
    2.98 8720.0161.410.890.170.46
    2.591 1030.0494.311.311.161.58
    2.951 3820.0817.132.551.552.45
    2.741 4060.1059.242.442.483.09
    冷轧4道次2.69 8520.0141.230.740.180.54
    2.591 0320.0242.111.120.381.09
    2.671 0640.0332.901.250.621.06
    2.791 3270.0585.102.191.041.76
    2.731 3710.0877.662.301.962.35
    冷轧5道次2.98 8540.0151.320.810.170.48
    2.901 0230.0252.201.210.340.81
    2.881 0490.0282.461.280.411.04
    2.881 4190.0484.222.600.561.41
    下载: 导出CSV
  • [1] HUNT E M, PLANTIER K B, PANTOYA M L. Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide [J]. Acta Materialia, 2004, 52(11): 3183–3191. DOI: 10.1016/j.actamat.2004.03.017.
    [2] SONG I, THADHANI N N. Shock-induced chemical reactions and synthesis of nickel aluminides [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Material, 1992, 23(1): 41–48. DOI: 10.1007/BF02660849.
    [3] KUK S W, RYU H J, YU J. Effects of the Al/Ni ratio on the reactions in the compression-bonded Ni-sputtered Al foil multilayer [J]. Journal of Alloys and Compounds, 2014, 589: 455–461. DOI: 10.1016/j.jallcom.2013.12.020.
    [4] BAKER E L, DANIELS A S, NG K W, et al. Barnie: A unitary demolition warhead [C] // 19th International Symposium on Ballistics. Interlaken, Switzerland, 2001: 23−27.
    [5] NIELSON D B, ASHCROFT B N, DOLL D W. Reactive material compositions and projectiles containing same: 8 568 541 [P]. 2013-10-29.
    [6] HUGUS G D, SHERIDAN E W, BROOKS G W. Structural metallic binders for reactive fragmentation weapons: 8 250 985 [P]. 2012-10-11.
    [7] MARTIN M. Processing and characterization of energetic and structural behavior of nickel aluminum with polymer binders [D]. USA: Georgia Institute of Technology, 2005: 41−45.
    [8] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [9] XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004.
    [10] 宋鸿武, 陈岩, 程明, 等. 异种金属层状复合材料累积叠轧工艺的研究进展 [J]. 材料导报, 2011, 25(10A): 7–12.

    SONG Hongwu, CHEN Yan, CHENG Ming, et al. Progresses in the accumulative roll-bonding of clad bimetals [J]. Materials Review, 2011, 25(10A): 7–12.
    [11] KNEPPER R, SNYDER M R, FRITZ G, et al. Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers [J]. Journal of Applied Physics, 2009, 105(8): 083504. DOI: 10.1063/1.3087490.
    [12] SPECHT P E, THADHANI N N, WEIHS T P. Configurational effects on shock wave propagation in Ni-Al multilayer composites [J]. Journal of Applied Physics, 2012, 111(7): 073527. DOI: 10.1063/1.3702867.
    [13] SPECHT P E, WEIHS T P, THADHANI N N. Interfacial effects on the dispersion and dissipation of shock waves in Ni/Al multilayer composites [J]. Journal of Dynamic Behavior of Materials, 2016, 2(4): 500–510. DOI: 10.1007/s40870-016-0084-0.
    [14] KELLY S C, THADHANI N N. Shock compression response of highly reactive Ni + Al multilayered thin foils [J]. Journal of Applied Physics, 2016, 119(9): 095903. DOI: 10.1063/1.4942931.
    [15] GAVENS A J, VAN HEERDEN D, MANN A B, et al. Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils [J]. Journal of Applied Physics, 2000, 87(3): 1255. DOI: 10.1063/1.372005.
    [16] MA E, THOMPSON C V, CLEVENGER L A, et al. Self-propagating explosive reactions in Al/Ni multilayer thin films [J]. Applied Physics Letters, 1990, 57(12): 1262. DOI: 10.1063/1.103504.
    [17] KUK S W, YU J, RYU H J. Effects of interfacial Al oxide layers: Control of reaction behavior in micrometer-scale Al/Ni multilayers [J]. Materials and Design, 2015, 84: 372–377. DOI: 10.1016/j.matdes.2015.06.173.
    [18] AMES R G. Vented chamber calorimetry for impact-initiated energetic materials [C] // 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005: 279.
    [19] DUNBAR E, THADHANI N N. High-pressure shock activation and mixing of nickel-aluminum powder mixtures [J]. Journal of Materials Science, 1993, 28: 2903–2914. DOI: 10.1007/BF00354693.
    [20] WEI C T, VITALI E, JIANG F, et al. Quasi-static and dynamic response of explosively consolidated metal-aluminum powder mixtures [J]. Acta Materialia, 2012, 60(3): 1418–1432. DOI: 10.1016/j.actamat.2011.10.027.
    [21] BOSLOUGH M B. A thermochemical model for shock-induced reactions (heat detonations) in solids [J]. Journal of Chemical Physics, 1990, 92(3): 1839–1848. DOI: 10.1063/1.458066.
    [22] XIONG W, ZHANG X, TAN M, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. DOI: 10.1021/acs.jpcc.6b06530.
    [23] LYNCH D D, KUNKEL R W, JUARASCIO S S. An analysis comparison using the vulnerability analysis for surface targets (VAST) computer code and the computation of vulnerable area and repair time (COVART Ⅲ) computer code: ARL-MR-341 [R]. USA: Army Research Laboratory, 1997.
    [24] 刘彤. 防空战斗部杀伤威力评估方法研究[D]. 南京: 南京理工大学, 2004: 53−56.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  4704
  • HTML全文浏览量:  1639
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 修回日期:  2018-04-10
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回