• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

星型负泊松比超材料防护结构抗爆抗冲击性能研究

杨德庆 吴秉鸿 张相闻

杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究[J]. 爆炸与冲击, 2019, 39(6): 065102. doi: 10.11883/bzycj-2018-0060
引用本文: 杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究[J]. 爆炸与冲击, 2019, 39(6): 065102. doi: 10.11883/bzycj-2018-0060
YANG Deqing, WU Binghong, ZHANG Xiangwen. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core[J]. Explosion And Shock Waves, 2019, 39(6): 065102. doi: 10.11883/bzycj-2018-0060
Citation: YANG Deqing, WU Binghong, ZHANG Xiangwen. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core[J]. Explosion And Shock Waves, 2019, 39(6): 065102. doi: 10.11883/bzycj-2018-0060

星型负泊松比超材料防护结构抗爆抗冲击性能研究

doi: 10.11883/bzycj-2018-0060
基金项目: 国家自然科学基金项目(51479115);海洋工程国家重点实验室课题(GKZD010071);
详细信息
    作者简介:

    杨德庆(1968- ),男,教授,yangdq@sjtu.edu.cn

  • 中图分类号: O342; O389; U661.44; TH132.41

Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core

  • 摘要: 采用数值方法对星型宏观负泊松比效应夹芯结构的抗冲击响应过程以及抗水下爆炸过程中的破坏形式进行了研究:探讨了星型负泊松比结构胞元壁厚、层数和胞元泊松比等参数对弹体侵彻及水下爆炸防护性能的影响。研究结果表明:对于高速或超高速弹体侵彻问题,单纯依靠结构性的被动防御无法应对;负泊松比效应蜂窝夹芯防护结构相较常规防护结构具有良好的水下抗爆性能;等质量条件下,泊松比的变化对抗爆性能影响明显,层数3层、泊松比为−1.63的星型夹芯结构的抗爆性能相对更优;等壁厚条件下,其水下抗爆性能随蜂窝胞元层数减小而增强。
  • 图  1  夹芯防护结构

    Figure  1.  Sandwich defensive structure

    图  2  星型负泊松比结构

    Figure  2.  The star-shaped auxetic structure

    图  3  星型多孔材料结构泊松比${\nu _{12}}$

    Figure  3.  Theoretical Poisson’s ratio of star-shaped structure ${\nu _{12}}$

    图  4  星型防护结构抗爆抗冲击数值仿真模型

    Figure  4.  Numerical model of the star-shaped auxetic defensive structure

    图  5  单层防护结构弹体冲击[14]

    Figure  5.  Impact of missile on single-layer defensive structure[14]

    图  6  双层防护结构弹体冲击[14]

    Figure  6.  Impact of missile on double-layer defensive structure[14]

    图  7  单层防护结构弹体冲击结果(v0=200 m/s)[14]

    Figure  7.  Result of impact of missile on single-layer defensive structure (v0=200 m/s)[14]

    图  8  单层防护结构弹体冲击结果(v0=340 m/s)[14]

    Figure  8.  Result of impact of missile on single-layer defensive structure (v0=340 m/s)[14]

    图  9  双层防护弹体冲击结果(v0=200 m/s)[14]

    Figure  9.  Result of impact of missile on double-layer defensive structure (v0=200 m/s)[14]

    图  10  双层防护结构弹体冲击结果(v0=340 m/s)[14]

    Figure  10.  Result of impact of missile on double-layer defensive structure (v0=340 m/s)[14]

    图  11  锥形弹体侵彻下初始速度与剩余速度关联曲线[17]

    Figure  11.  Initial impact velocity vs. residual velocity for three shields impacted by aheavy, conical-nose projectile[17]

    图  12  等质量负泊松比星型夹芯防护结构弹体剩余速度

    Figure  12.  Residual velocity of missile after impact on star-shaped Sandwich defensive structure with negative Poisson ratio

    图  13  星型夹芯防护结构弹体冲击仿真过程截面示意图(5层,$\nu $=−1.00,初速度200 m/s)

    Figure  13.  Demonstration of one section during the missile impact simulation on star-shaped sandwich defensive structure (5 layers, $\nu $=−1.00, initial velocity 200 m/s)

    图  14  单层防护结构水下爆炸模拟结果[14]

    Figure  14.  Simulation result of underwater explosion of single-layer defensive structure[14]

    图  15  双层防护结构水下爆炸仿真结果(前后面板厚度一致)

    Figure  15.  Simulation Result of underwater explosion of double-layer defensive structure (with front and rear plates of the same thickness)

    图  16  前后面板最大破口尺寸

    Figure  16.  Maximum crevasse of face plate

    图  17  前后面板最大塑性区域尺寸

    Figure  17.  Maximum size of plastic zones of face plate

    图  18  星型负泊松比夹芯结构水下抗爆数值结果($\nu $=−1.63)

    Figure  18.  Numerical result of star-shaped auxetic sandwich structure ($\nu$=−1.63)

    图  19  夹芯防护结构迎爆面破口区域与塑性区域比值

    Figure  19.  Ratio of fracture region to plastic region

    图  20  典型星型负泊松比夹芯防护结构抗爆过程仿真截面图(3层,$\nu $=−1.63)

    Figure  20.  The anti-explosion performance of auxetic sandwich defensive structure (3 layers, $\nu $=−1.63)

    图  21  等壁厚星型负泊松比超材料夹芯防护结构数值仿真结果(3层,$\nu $=−1.00)

    Figure  21.  Numerical result of auxetic cellular sandwich structure (3 larers, $\nu $=−1.00)

    图  22  等壁厚星型负泊松比夹芯结构前后面板破口最大尺寸

    Figure  22.  Maximum fracture region size on front and rear plates of star-shaped sandwich defensive structure of equal cell thickness

    图  23  等壁厚星型负泊松比夹芯结构前后面板塑性区最大尺寸

    Figure  23.  Maximum plastic region size on front and rear plates of Star-shaped Sandwich defensive structure of equal cell thickness

    表  1  材料参数

    Table  1.   Material parameters

    材料性质参数Johnson-Cook本构模型参数Johnson-Cook失效模型参数
    E/GPaνρ/(kg·m−3)Tm/KT0/KA/MPaB/MPaCnmD1D2D3D4D5
    2000.27 8201 7832935073200.0640.281.060.10.761.570.005−0.84
    下载: 导出CSV

    表  2  防护结构芯层胞元壁厚

    Table  2.   Cell thickness of Sandwich defensive structure

    胞元层数3层5层
    泊松比−2.91−1.63−1.00−0.63−2.91−1.63−1.00−0.63
    胞元壁厚/mm 0.87 1.01 1.16 1.68 0.540.60 0.65 0.97
    下载: 导出CSV

    表  3  X1方向最大破口尺寸及塑性区域尺寸

    Table  3.   Maximum fracture region size and plastic region size

    防护结构最大破口尺寸/cm最大塑性区域尺寸/cm破口与塑性应变区比值
    单层板防护结构 62.68605.260.104
    等质量双层板防护结构背爆面(前后面板厚度一致)143.68263.940.544
    等质量双层板防护结构背爆面(迎爆面钢板厚度 20 mm) 83.53249.960.334
    等质量双层板防护结构背爆面(背爆面钢板厚度 20 mm)127.18240.030.530
    下载: 导出CSV

    表  4  等质量条件下芯层胞元壁厚

    Table  4.   Cell thickness of sandwich defensive structure under condition of equal mass

    胞元层数3层5层
    泊松比−2.91−1.63−1.00−0.63−2.91−1.63−1.00−0.63
    胞元壁厚/mm 5.66 6.56 7.5410.92 3.51 3.90 4.23 6.31
    下载: 导出CSV
  • [1] BALANDIN D, BOLOTNIK N, PILKEY W. Optimal protection from impact, shock and vibration [M]. Amsterdam: Gordon and Breach Science Publishers, 1998.
    [2] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究 [J]. 爆炸与冲击, 2004, 24(2): 133–139. DOI: 10.11883/1001-1455(2004)02-0133-07.

    ZHU Xi, ZHANG Zhenhua, LIU Runquan, et al. Experimental study on the explosion resistance of cabin near shipboard of surface war ship subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2004, 24(2): 133–139. DOI: 10.11883/1001-1455(2004)02-0133-07.
    [3] WIERNICKI C, LIEM F, WOODS G, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads [J]. Naval Engineers Journal, 1991, 103(3): 192–203. doi: 10.1111/nej.1991.103.issue-3
    [4] MCSHANE G, DESHPANDE V, FLECK N. The underwater blast resistance of metallic sandwich beams with prismatic lattice cores [J]. Journal of Applied Mechanics, 2007, 72(2): 352–364.
    [5] ABRATE S. Impulsive response of sandwich structures [J]. Procedia Engineering, 2014, 88: 62–68. doi: 10.1016/j.proeng.2014.11.127
    [6] VASILACHE C A, BOAZU D. Sandwich plates loaded at explosion impact [J]. Materiale Plastice, 2013, 50(2): 122–125.
    [7] 黄超, 姚熊亮, 张阿漫. 钢夹层板近场水下爆炸抗爆分析及其在舰船抗爆防护中的应用 [J]. 振动与冲击, 2010, 29(9): 73–76. doi: 10.3969/j.issn.1000-3835.2010.09.017

    HUANG Chao, YAO Xiongliang, ZHANG Aman. Analysis of blast-resistance of steel sandwich plate under proximity underwater explosion loading and its application in ship protection [J]. Journal of Vibration and Shock, 2010, 29(9): 73–76. doi: 10.3969/j.issn.1000-3835.2010.09.017
    [8] 卢天健, 辛锋先. 轻质板壳结构设计的振动和声学基础 [M]. 北京: 科学出版社, 2012.
    [9] 邹广平, 孙杭其, 唱忠良, 等. 聚氨酯/钢夹芯结构爆炸载荷下动力学响应的数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.

    ZOU Guangping, SUN Hangqi, CHANG Zhongliang, et al. Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading [J]. Explosion and Shock Waves, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
    [10] 方岱宁, 张一慧等. 轻质点阵材料力学与多功能设计 [M]. 北京: 科学出版社, 2009.
    [11] QU T, AVACHAT S, ZHOU M. Response of cylindrical composite structures subjected to underwater impulsive loading: experimentations and computations [J]. Journal of Engineering Materials and Technology, Transactions of the ASME, 2017, 139(2): Article ID 021020.
    [12] 杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.

    YANG Deqing, MA Tao, ZHANG Genglin. A noval auxetic broadside defensive structure foe naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.
    [13] ZHANG X W, YANG D Q. Numerical and experimental studies of a light-weight auxetic cellular vibration isolation base [J]. Shock and Vibration, 2016(9): 1–16.
    [14] 杨德庆, 张相闻, 吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素 [J]. 上海交通大学学报, 2018, 52(4): 5–13.

    YANG Deqing, ZHANG Xiangwen, WU Binghong. Study on the influence factors of explosion and shock resistance performance of auxetic sandwich defensive structure for naval ships [J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 5–13.
    [15] GRIMA J N, GATT R, ELLUL B, et al. Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations [J]. Journal of Non-Crystalline Solids, 2010, 356(37−40): 1980–1987. doi: 10.1016/j.jnoncrysol.2010.05.074
    [16] 吴秉鸿, 张相闻, 杨德庆. 星型负泊松比多孔材料力学性能及应用研究 [J]. 固体力学学报, 2018, 39(2): 139–151. doi: 10.19636/j.cnki.cjsm42-1250/o3.2017.015

    WU Binghong, ZHANG Xiangwen, YANG Deqing. Mechanical properties and application of the star-shaped cellular auxetic material [J]. Chinese Journal of Solid Mechanics, 2018, 39(2): 139–151. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.015.
    [17] TENG X, DEY S, BORVIK T, et al. Protection performance of double-layered metal shields against projectile impact [J]. Journal of Mechanics of Materials and Structures, 2007, 2(7): 1309–1330. doi: 10.2140/jomms
    [18] DURMUS A, GUDEN M, GULCIMEN B, et al. Experimental investigations on the ballistic impact performances of cold rolled sheet metals [J]. Materials and Design, 2011, 32(3): 1356–1366. doi: 10.1016/j.matdes.2010.09.016
  • 加载中
图(23) / 表(4)
计量
  • 文章访问数:  6927
  • HTML全文浏览量:  2458
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-24
  • 修回日期:  2018-04-22
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回