阶跃信号电探针诊断爆轰加载下金属微喷现象

文雪峰 王晓燕 王健 任国武 洪仁楷 胡杨

文雪峰, 王晓燕, 王健, 任国武, 洪仁楷, 胡杨. 阶跃信号电探针诊断爆轰加载下金属微喷现象[J]. 爆炸与冲击, 2019, 39(7): 074102. doi: 10.11883/bzycj-2018-0104
引用本文: 文雪峰, 王晓燕, 王健, 任国武, 洪仁楷, 胡杨. 阶跃信号电探针诊断爆轰加载下金属微喷现象[J]. 爆炸与冲击, 2019, 39(7): 074102. doi: 10.11883/bzycj-2018-0104
WEN Xuefeng, WANG Xiaoyan, WANG Jian, REN Guowu, HONG Renkai, HU Yang. Characterizing detonation-induced micro-jetting by using step signal electric probe[J]. Explosion And Shock Waves, 2019, 39(7): 074102. doi: 10.11883/bzycj-2018-0104
Citation: WEN Xuefeng, WANG Xiaoyan, WANG Jian, REN Guowu, HONG Renkai, HU Yang. Characterizing detonation-induced micro-jetting by using step signal electric probe[J]. Explosion And Shock Waves, 2019, 39(7): 074102. doi: 10.11883/bzycj-2018-0104

阶跃信号电探针诊断爆轰加载下金属微喷现象

doi: 10.11883/bzycj-2018-0104
基金项目: 国家自然科学基金(11502253);中国工程物理研究院科学技术发展基金(2015B0201002)
详细信息
    作者简介:

    文雪峰(1988- ),男,硕士,助理研究员,scu_wxf@163.com

    通讯作者:

    王晓燕(1976- ),女,硕士,副研究员,wangxy101s@163.cm

  • 中图分类号: O383

Characterizing detonation-induced micro-jetting by using step signal electric probe

  • 摘要: 针对目前缺乏用于狭小测试空间复杂结构金属样品的微喷现象诊断技术的现状,探索使用阶跃信号电探针诊断爆轰加载下金属样品微喷现象的方法。设计阶跃信号电探针测试技术,开展仿真验证电探针在微喷物质导通下K+RX模式的放电机理。在爆轰微喷实验中通过电探针信号观察到准连续状态微喷区及其存在的两种动作演化过程:阶梯放电曲线表征微喷物质随靠近后界面密度逐步增加,多次放电现象表征微喷物质从连续状态拉升变为离散状态。采用微射流模型描述准连续状态微喷区物质状态,通过电平曲线计算出被测物质等效电阻,再通过等效电阻计算微射流的等效尺寸,从而可描述准连续状态微喷区物质的密度。
  • 图  1  实验原理示意图

    Figure  1.  Schematic of principle of experiment

    图  2  阶跃信号电探针原理

    Figure  2.  Principle of an electric probe for detecting step signals

    图  3  电探针信号仿真

    Figure  3.  Simulated electric probe signal

    图  4  电探针信号实验结果

    Figure  4.  Experimental signals by electric probes

    图  5  物质状态界面提取

    Figure  5.  Extracting the mass state boundary

    图  6  Sn样品体密度

    Figure  6.  Volumetric density of Sn sample

    图  7  微喷物质密度计算

    Figure  7.  Calculation of micro-jetting mass density

  • [1] DURAND O, SOULARD L. Power law and exponential jetting size distributions from the dynamic fragmentation of shock-loaded Cu and Cn metals under melt conditions [J]. Journal of Applied Physics, 2013, 114: 194902. doi: 10.1063/1.4832758
    [2] MONFAREED S K, ORO D M, GROVER M, et al. Experimental observation on the links between surface perturbation parameter and shock-induced mass ejection [J]. Journal of Applied Physics, 2016, 116: 0636504.
    [3] ASAY J R. Material ejection from shock-loaded free surfaces of aluminums and lead: SAND-76-0542 [R]. 1976.
    [4] VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of jetting from shocked tin surfaces [J]. Journal of Applied Physics, 2005, 98: 113508. doi: 10.1063/1.2132521
    [5] SIGNOR L, DRAGON A, et al. Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin [J]. International Journal of Impact Engineering, 2010, 37: 887–900. doi: 10.1016/j.ijimpeng.2010.03.001
    [6] BUTTLER W T, ORO D M, OLSON R T, et al. Second shock jetting measurement with an explosive driven two-shockwave drive [J]. Journal of Applied Physics, 2014, 116: 103519. doi: 10.1063/1.4895053
    [7] MCMILLAN C, WHISPKY R. Holographic measurement of jetting from shocked metal surface [J]. SPIE High Speed Photography and Photonics, 1988, 1032: 553–557.
    [8] 汪伟, 李作友, 李欣竹, 等. 用超高速阴影摄影技术研究微喷现象 [J]. 应用光学, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010

    WANG Wei, LI Zuoyou, LI Xinzhu, et al. Study on micro-jet on ultra-high speed shadow photography [J]. Journal of Applied Optics, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010
    [9] ZELLER M B, MCNEIL W V, GRAY G T, et al. Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces [J]. Journal of Applied Physics, 2008, 103: 083521. doi: 10.1063/1.2906107
    [10] 黄正平. 爆炸与冲击电测技术 [M]. 北京: 国防工业出版社. 2006: 617−623.
    [11] 王翔, 贾路峰, 傅秋卫, 等. 宽脉冲网络信号源及应用 [J]. 高压物理学报, 2005, 19(3): 279–283. doi: 10.3969/j.issn.1000-5773.2005.03.015

    WANG Xiang, JIA Lufeng, FU Qiuwei, et al. Broad pulse forming circuit and its appl ication [J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 279–283. doi: 10.3969/j.issn.1000-5773.2005.03.015
    [12] 文雪峰, 王晓燕, 王健, 等. 可识别微层裂前界面的阶跃信号电探针测试技术 [J]. 爆炸与冲击, 2018, 38(2): 309–315. DOI: 10.11883/bcycj-2016-0271.

    WEN Xuefeng, WANG Xiaoyan, WANG Jian, et al. A step-signal electric probe technology for recognasing the front surface of micro-spall [J]. Explosion and Shock Waves, 2018, 38(2): 309–315. DOI: 10.11883/bcycj-2016-0271.
    [13] SEIFTER A, FURLANETTO M R, GROVER M, et al. Use of IR pyrometry to measure free-surface temperature of partially melted tin as a function of shock pressure [J]. Journal of Applied Physics, 2009, 105: 123526. doi: 10.1063/1.3153973
  • 加载中
图(7)
计量
  • 文章访问数:  5043
  • HTML全文浏览量:  1887
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-30
  • 修回日期:  2018-08-24
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回