动态压缩下Zr基非晶合金失效释能机理

张云峰 罗兴柏 施冬梅 张玉令 刘国庆 甄建伟

张云峰, 罗兴柏, 施冬梅, 张玉令, 刘国庆, 甄建伟. 动态压缩下Zr基非晶合金失效释能机理[J]. 爆炸与冲击, 2019, 39(6): 063101. doi: 10.11883/bzycj-2018-0114
引用本文: 张云峰, 罗兴柏, 施冬梅, 张玉令, 刘国庆, 甄建伟. 动态压缩下Zr基非晶合金失效释能机理[J]. 爆炸与冲击, 2019, 39(6): 063101. doi: 10.11883/bzycj-2018-0114
ZHANG Yunfeng, LUO Xingbai, SHI Dongmei, ZHANG Yuling, LIU Guoqing, ZHEN Jianwei. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression[J]. Explosion And Shock Waves, 2019, 39(6): 063101. doi: 10.11883/bzycj-2018-0114
Citation: ZHANG Yunfeng, LUO Xingbai, SHI Dongmei, ZHANG Yuling, LIU Guoqing, ZHEN Jianwei. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression[J]. Explosion And Shock Waves, 2019, 39(6): 063101. doi: 10.11883/bzycj-2018-0114

动态压缩下Zr基非晶合金失效释能机理

doi: 10.11883/bzycj-2018-0114
详细信息
    作者简介:

    张云峰(1990- ),男,博士研究生,1193954881@qq.com

    通讯作者:

    张玉令(1983- ),男,博士,讲师,zhangyuling2009@163.com

  • 中图分类号: O347; TB33

Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression

  • 摘要: 为研究Zr基非晶合金动态压缩条件下的失效释能机理,采用力学试验机、霍普金森杆、高速摄影、差示扫描量热分析(differential scanning calorimetry, DSC)、扫描电镜(scanning electron microscope,SEM)等,得到了材料应力应变曲线、高速摄影图像、失效式样微观形貌及DSC曲线,根据实验数据计算了材料的晶化激活能,并拟合了材料的JH-2(Johnson-Holmquist II)模型,对材料动态失效过程进行有限元数值模拟。实验结果表明,压缩条件下材料为脆性断裂,断口处观察到典型的脉状纹样及液滴状结构,材料失效过程伴随着释能现象;数值模拟结果表明,材料裂纹局部的瞬时内能大于材料晶化激活能。动态压缩下材料的失效释能机理即为材料破碎释放储存的弹性势能,并导致材料局部晶化释能,释能强度与应变率成正相关。
  • 图  1  动态压缩实验装置

    Figure  1.  Dynamic compression experimental facility

    图  2  不同升温速率下热流随温度变化曲线

    Figure  2.  Curves of endothermic heat flow as a function of temperature at different heating rates

    图  3  材料压缩应力应变曲线

    Figure  3.  Stress-strain curves of Zr-based amorphous alloys in compression

    图  4  静态实验试样SEM照片

    Figure  4.  SEM images of static compressed samples

    图  5  动态实验试样SEM照片

    Figure  5.  SEM images of dynamic compressed samples

    图  6  材料高速摄影图像

    Figure  6.  High-speed photography of material failure

    图  7  材料动态压缩高速摄影图像

    Figure  7.  High-speed photography of material under dynamic compression

    图  8  材料的应变率敏感性

    Figure  8.  Strain rate sensitivity of the material

    图  9  3 129 s−1应变率下材料损伤云图

    Figure  9.  Damage maps of material under the strain rate of of 3 129 s−1

    图  10  不同应变率下材料损伤云图

    Figure  10.  Damage patterns of materials at different strain rates

    图  11  材料失效时内能云图

    Figure  11.  Internal energy patterns of materials when failure occurs

    表  1  材料的JH-2材料模型参数

    Table  1.   JH-2 model constants of the material

    材料 K1/GPa K2 /GPa K3/GPa D1 D2
    ZrTiNiCuBe 114.3 268.5 1 386 0.21 1.75
    材料 A B C M N
    ZrTiNiCuBe 1.162 0.258 0.017 3 0.59 0.829
    下载: 导出CSV
  • [1] TOGO H, ZHANG Y, KAWAMURA Y, et al. Properties of Zr-based bulk metallic glass under shock compression [J]. Materials Science and Engineering A, 2007, 449–451: 264–268. DOI: 10.1016/j.msea.2006.02.431.
    [2] MATTERN N, KUHN U, HERMANN H, et al. Thermal behavior and glass transition of Zr-based bulk metallic glasses [J]. Materials Science and Engineering A, 2004, 375−377: 351–354. DOI: 10.1016/j.msea.2003.10.125.
    [3] QIAO J W, ZHANG Y, LI J H, et al. Strain rate response of a Zr-based composite fabricated by Bridgman solidification [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 214–219. DOI: 10.1007/s12613-010-0216-9.
    [4] ZHANG Q S, ZHANG W, XIE G Q, et al. Synthesis, structure and mechanical properties of Zr-Cu-based bulk metallic glass composites [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(2): 208–213. DOI: 10.1007/s12613-010-0215-x.
    [5] LIU C, HEATHERLY L, HORTON J, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metallurgy Materials Transaction A, 1998, 29: 1811–1820. DOI: 10.1007/s11661-998-0004-6.
    [6] DAI L H, BAI Y L. Basic mechanical behaviors and mechanics of shear banding in BMGs [J]. International Journal of Impact Engineering, 2008, 35: 704–716. DOI: 10.1016/j.ijimpeng.2007.10.007.
    [7] BATTEZZATI L, BALDISSIN D. Quantitative evaluation of length scales for temperature rise in shear bands and for failure of metallic glasses [J]. Scripta Materialia, 2008, 59: 223–226. DOI: 10.1016/j.scriptamat.2008.03.016.
    [8] 潘念侨. Zr基非晶合金材料本构关系及其释能效应研究[D]. 南京: 南京理工大学, 2016: 53−71.
    [9] DAI L H, YAN M, LIU L F, et al. Adiabatic shear banding instability in bulk metallic glasses [J]. Applied Physics Letters, 2005, 87: 141916 -1–14916-32005. DOI: 10.1063/1.2067691.
    [10] JIANG M Q, LING Z, MENG J X, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage [J]. Philosophical Magazine, 2008, 88(3): 407–426. DOI: 10.1080/14786430701864753.
    [11] JIANG W H, LIAO H H, LIU F X, et al. Rate-dependent temperature increases in shear bands of a bulk-metallic glass [J]. Metallurgical and Materials Transactions A, 2008, 39(8): 1822–1830. DOI: 10.1007/s11661-007-9321-4.
    [12] WANG J G, PAN Y, SONG S X, et al. How hot is a shear band in a metallic glass? [J]. Materials Science and Engineering A, 2016, 651: 321–331. DOI: 10.1016/j.msea.2015.10.125.
    [13] WRIGHT W J, BYER R R, GU X J. High-speed imaging of a bulk metallic glass during uniaxial compression [J]. Applied Physics Letters, 2013, 102: 241920. DOI: 10.1063/1.4811744.
    [14] 李刚. Zr基非晶合金激光熔覆与诱导自蔓延合成[D]. 大连: 大连理工大学, 2003: 11−15.
    [15] JIANG M Q, WEI Y P, WILDE G, et al. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation [J]. Applied Physics Letters, 2015, 106: 021904–1. DOI: 10.1063/1.4905928.
    [16] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermatellics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
    [17] FAN Z J, ZHENG Z Y, JIAO Z B. Compressive fracture characteristics of Zr-based bulk metallic glass [J]. Science China Physics, Mechanics and Astronomy, 2016, 53(5): 823–827. DOI: 10.1007/s11433-010-0154-6.
    [18] NOWAK S, OCHIN P, PASKO A, et al. Mechanical behavior of Zr-based bulk metallic glasses [J]. Strength of Materials, 2008, 40(1): 154–157. DOI: 10.1007/s11223-008-0040-x.
    [19] JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643.
    [20] WANG W H, LI F Y, PAN M X, et al. Elastic property and its response to pressure in a typical bulk metallic glass [J]. Acta Materialia, 2004, 52: 715–719. DOI: 10.1016/j.actamat.2003.10.008.
    [21] WANG W H, WEN P, WANG L M, et al. Equation of state of bulk metallic glasses studied by an ultrasonic method [J]. Applied Physics Letters, 2004, 24: 3947–3949. DOI: 10.1063/1.1426272.
    [22] 石永相. 多元非晶合金含能材料药型罩应用研究[D]. 石家庄: 陆军工程大学, 2017: 35−46.
    [23] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25: 211–231. DOI: 10.1016/S0734-743X(00)00046-4.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  6147
  • HTML全文浏览量:  1584
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-05-30
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回