岩石射孔开裂的初步数值模拟

林英松 姚劲松 刘莹 乔继延 丁雁生

林英松, 姚劲松, 刘莹, 乔继延, 丁雁生. 岩石射孔开裂的初步数值模拟[J]. 爆炸与冲击, 2019, 39(7): 075201. doi: 10.11883/bzycj-2018-0122
引用本文: 林英松, 姚劲松, 刘莹, 乔继延, 丁雁生. 岩石射孔开裂的初步数值模拟[J]. 爆炸与冲击, 2019, 39(7): 075201. doi: 10.11883/bzycj-2018-0122
LIN Yingsong, YAO Jinsong, LIU Ying, QIAO Jiyan, DING Yansheng. Preliminary numerical simulation of rock perforation cracking[J]. Explosion And Shock Waves, 2019, 39(7): 075201. doi: 10.11883/bzycj-2018-0122
Citation: LIN Yingsong, YAO Jinsong, LIU Ying, QIAO Jiyan, DING Yansheng. Preliminary numerical simulation of rock perforation cracking[J]. Explosion And Shock Waves, 2019, 39(7): 075201. doi: 10.11883/bzycj-2018-0122

岩石射孔开裂的初步数值模拟

doi: 10.11883/bzycj-2018-0122
详细信息
    作者简介:

    林英松(1964- ),女,博士,教授,linyingsong@upc.edu.cn

  • 中图分类号: O389

Preliminary numerical simulation of rock perforation cracking

  • 摘要: 岩石射孔作业后孔眼周围裂缝分布规律对后续压裂有不可忽视的影响。选取射孔围岩的横切面为研究对象,将三维射孔侵彻过程简化为二维扩孔过程。考虑岩石细观非均匀性,设细观强度参数服从韦布尔分布。应用拉伸破坏准则和Mohr-Coulomb压剪破坏准则,并用模量折减法处理单元开裂,从而用FEPG软件实现了有限元数值模拟。模拟结果表明:射孔后的岩石可根据裂缝产生原因及分布由内而外划分为四个区域:压剪破坏区、拉伸破坏集中区、拉伸破坏扩展区和未破坏区。分析了不同射孔弹规格及围压条件下裂纹分布变化规律。与室内模拟实验结果进行对比分析,初步验证了模型的有效性。
  • 图  1  几何模型示意图

    Figure  1.  Schematic diagram of the geometric model

    图  2  数值模拟结果图

    Figure  2.  Numerical simulation result

    图  3  岩石破坏分区图

    Figure  3.  The distribution of rock damage zones

    图  4  数值模拟裂纹数分布图

    Figure  4.  Crack number distribution of numerical simulation

    图  5  数值模拟不同缝宽裂纹数分布图

    Figure  5.  Simulated number distribution of different width crack

    图  6  侵彻孔直径7 mm围压2 MPa时岩石切片破坏形态

    Figure  6.  The rock damage form with 7 mm perforating charge under 2 MPa confining pressure

    图  7  不同侵彻孔直径下岩石切片裂纹分布图

    Figure  7.  Distribution of rock crack number with perforating charge of different diameters

    图  8  侵彻孔径9 mm围压为0时岩石切片裂缝形态

    Figure  8.  The rock damage form with 9 mm charge under no confining pressure

    图  9  不同围压下岩石切片裂纹分布图

    Figure  9.  The distribution of rock crack number under different confining pressures

    图  10  实验装置示意图

    Figure  10.  Schematic diagram of experimental device

    图  11  水泥试样安装图

    Figure  11.  Diagram of cement sample installation

    图  12  射孔后水泥靶材破坏形态

    Figure  12.  Damaged form of cement sample surface after perforation

    图  13  靶材剖面裂缝数目分布图

    Figure  13.  The distribution of crack number on cement samples

    图  14  X1-B面不同缝宽裂缝数目分布图

    Figure  14.  The distribution of crack with different width on X1-B surface

    图  15  数值模拟与物理实验靶材破坏形态对比图

    Figure  15.  Comparison of damage forms between physical experiment and numerical simulation

    图  16  数值模拟与物理实验裂缝数目分布图

    Figure  16.  Crack number distribution by physical experiment and numerical simulation

    表  1  模拟计算参数

    Table  1.   Parameters of simulation calculation

    参数
    名称
    弹性模
    量/GPa
    抗拉强
    度/MPa
    内摩擦
    角/(°)
    内聚力/
    MPa
    泊松比侵彻孔
    直径/mm
    参数大小401017200.311
    下载: 导出CSV

    表  2  天然页岩与水泥试样数据对比表

    Table  2.   Comparison of performance parameters between natural shale and cement sample

    试样种类渗透率/(10−6 μm2)孔隙度/%
    天然页岩4.04.1
    水泥试样6.73.3
    下载: 导出CSV

    表  3  水泥试样尺寸及编号表

    Table  3.   Size and number of cement samples

    围压/
    MPa
    试样直径/
    mm
    试样长度/
    mm
    试样
    编号
    上端面
    编号
    下端面
    编号
    30200200X1X1-AX1-B
    300X2X2-AX2-B
    500X3X3-AX3-B
    20200200Y1Y1-AY1-B
    300Y2Y2-AY2-B
    500Y3Y3-AY3-B
    下载: 导出CSV
  • [1] IEA. World energy outlook 2011 [R]. France: International Energy Agency, 2011.
    [2] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学 [J]. 石油勘探与开发, 2013, 40(4): 385–399. DOI: 10.11698/PED.2013.04.01.

    ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology [J]. Petroleum Exploration and Development, 2013, 40(4): 385–399. DOI: 10.11698/PED.2013.04.01.
    [3] 刘合, 王峰, 王毓才, 等. 现代油气井射孔技术发展现状与展望 [J]. 石油勘探与开发, 2014, 41(6): 731–737. DOI: 10.11698/PED.2014.06.13.

    LIU He, WANG Feng, WANG Yucai, et al. Oil well perforation technology: status and prospects [J]. Petroleum Exploration and Development, 2014, 41(6): 731–737. DOI: 10.11698/PED.2014.06.13.
    [4] 胡柳青, 李夕兵, 龚声武. 冲击载荷作用下裂纹动态响应的数值模拟 [J]. 爆炸与冲击, 2006, 26(3): 214–221. DOI: 10.11883/1001-1455(2006)03-0214-08.

    HU Liuqing, LI Xibing, GONG Shengwu. Simulation on dynamic response of crack subjected to impact loading [J]. Explosion and Shock Waves, 2006, 26(3): 214–221. DOI: 10.11883/1001-1455(2006)03-0214-08.
    [5] 朱秀星, 张林, 薛世峰, 等. 砂岩储层射孔压实伤害评价 [J]. 中国石油大学学报(自然科学版), 2014, 38(1): 137–142. DOI: 10.3969/j.issn.1673-5005.2014.01.021.

    ZHU Xiuxing, ZHANG Lin, XUE Shifeng, et al. Evaluation of perforating damage for sandstone [J]. Journal of China University of Petroleum, 2014, 38(1): 137–142. DOI: 10.3969/j.issn.1673-5005.2014.01.021.
    [6] 薛世峰, 逄铭玉, 朱秀星, 等. 砂岩储层射孔压实带孔隙度与渗透率损伤研究 [J]. 岩土力学, 2015, 36(6): 1529–1536. DOI: 10.16285/j.rsm.2015.06.002.

    XUE Shifeng, PANG Mingyu, ZHU Xiuxing, et al. Study of porosity and permeability damage of perforation compaction zone in sandstone reservoir [J]. Rock and Soil Mechanics, 2015, 36(6): 1529–1536. DOI: 10.16285/j.rsm.2015.06.002.
    [7] 单清林, 金衍, 王亚军, 等. 螺旋射孔多孔眼起裂裂缝形态有限元模拟 [J]. 中国海上油气, 2017, 29(4): 123–130. DOI: 10.11935/j.issn.1673-1506.2017.04.016.

    SHAN Qinglin, JIN Yan, WANG Yajun, et al. Finite element simulation of fracture initiation from multiple perforation channels if spiral pattern [J]. China Offshore Oil and Gas, 2017, 29(4): 123–130. DOI: 10.11935/j.issn.1673-1506.2017.04.016.
    [8] 王成, 王万军, 宁建国. 聚能装药对混凝土靶板的侵彻研究 [J]. 力学学报, 2015, 47(4): 672–886. DOI: 10.6052/0459-1879-14-336.

    WANG Cheng, WANG Wanjun, DING Jianguo. Investigation on shaped charge penetrating into concrete targets [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 672–886. DOI: 10.6052/0459-1879-14-336.
    [9] NABIPOUR A, SARMADIVALEH M. A DEM study on perforation induced damaged zones and penetration length in sandstone reservoirs [C] // 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium. American Rock Mechanics Association, 2010.
    [10] 向旭, 赵世华, 周伏虎. 石油射孔弹金属射流穿孔机理及金属粉末选用研究 [J]. 测井技术, 2000, 24(6): 448–449. DOI: 10.3969/j.issn.1004-1338.2000.06.012.

    XIANG Xu, ZHAO Shihua, ZHOU Fuhu. Perforation mechanism of metal perforating boreholes and selection of metal powders [J]. Well Logging Technology, 2000, 24(6): 448–449. DOI: 10.3969/j.issn.1004-1338.2000.06.012.
    [11] 范裕如. 串联外套式增效射孔技术研究[D]. 太原: 中北大学, 2013: 65.
    [12] 谭延栋. 聚能喷流射孔[M]. 北京: 石油工业出版社, 1958.
    [13] 徐芝纶. 弹性力学上册[M]. 北京: 高等教育出版社, 2006.
    [14] 林英松, 蒋金宝, 朱天玉, 等. 爆炸载荷对水泥试样损伤破坏规律研究 [J]. 中国石油大学学报(自然科学版), 2006, 30(3): 55–58. DOI: 10.3321/j.issn:1000-5870.2006.03.012.

    LIN Yingsong, JIANG Jinbao, ZHU Tianyu, et al. Research of cement sample's damage and fracture by exploding load [J]. Journal of China University of Petroleum (Natural Science Edition), 2006, 30(3): 55–58. DOI: 10.3321/j.issn:1000-5870.2006.03.012.
    [15] 荣峰. 非均匀脆性介质损伤演化的多尺度数值模拟[D]. 北京: 中国科学院力学研究所, 2006.
    [16] Recommended practices for evaluation of well perforators [S]. Washington: API Publishing Services, 2006.
    [17] 林英松, 刘莹, 魏晓菲, 等. 射孔作业对孔道周围岩石损伤规律实验研究 [J]. 实验室研究与探索, 2017, 36(12): 47–51. DOI: 10.3969/j.issn.1006-7167.2017.12.013.

    LIN Yingsong, LIU Ying, WEI Xiaofei, et al. Experimental study on failure laws of rock around perforating tunnel caused by perforation [J]. Research and Exploration in Laboratory, 2017, 36(12): 47–51. DOI: 10.3969/j.issn.1006-7167.2017.12.013.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  5950
  • HTML全文浏览量:  1959
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-12
  • 修回日期:  2018-08-31
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回