爆炸冲击波反射流场的理论计算方法

贾雷明 王澍霏 田宙

贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算方法[J]. 爆炸与冲击, 2019, 39(6): 064201. doi: 10.11883/bzycj-2018-0167
引用本文: 贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算方法[J]. 爆炸与冲击, 2019, 39(6): 064201. doi: 10.11883/bzycj-2018-0167
JIA Leiming, WANG Shufei, TIAN Zhou. A theoretical method for the calculation of flow field behind blast reflected waves[J]. Explosion And Shock Waves, 2019, 39(6): 064201. doi: 10.11883/bzycj-2018-0167
Citation: JIA Leiming, WANG Shufei, TIAN Zhou. A theoretical method for the calculation of flow field behind blast reflected waves[J]. Explosion And Shock Waves, 2019, 39(6): 064201. doi: 10.11883/bzycj-2018-0167

爆炸冲击波反射流场的理论计算方法

doi: 10.11883/bzycj-2018-0167
详细信息
    作者简介:

    贾雷明(1989- ),男,博士研究生,jialeiming@nint.ac.cn

  • 中图分类号: O382

A theoretical method for the calculation of flow field behind blast reflected waves

  • 摘要: 爆炸冲击波遇到固壁,依次发生正规和非正规反射。本文中基于镜像方法,将爆炸冲击波在固壁反射等效为真实和虚拟爆炸流场的相互作用,建立了波后流场的理论计算方法。首先,假定反射波是以虚拟爆源为中心的圆弧,马赫杆是以爆心在固壁投影点为中心的圆弧。然后,根据爆炸自由场传播规律,利用基于几何近似的方法,建立流场中冲击波结构随时间演化的计算方法,确定任意时刻波后流场区域。最后,利用新发展的叠加模型LAMBR (LAMB revisied),将真实和虚拟爆炸流场进行叠加,给出波后流场中的压力、密度和速度等物理量。通过与数值模拟结果和已有数据进行对比,发现该方法得到的流场物理量分布、峰值等能够反映流场发展的主要规律,从而验证了该理论方法的合理性。而且,该理论方法所需的时间相较于数值模拟大大缩短。
  • 图  1  爆炸冲击波反射示意图

    Figure  1.  Schematic diagram of blast wave reflection

    图  2  镜像法示意图

    Figure  2.  Diagram of the method of image for blast wave reflection

    图  3  1 kg TNT 爆炸自由场冲击波参数

    Figure  3.  Free field blast wave parameters for 1 kg TNT explosion

    图  4  不同爆高情况下三波点轨迹

    Figure  4.  Triple point trajectories at different heights of explosion

    图  5  H=0.793 4 m时,不同时刻流场压力云图(黑线为物质界面)

    Figure  5.  Pressure contours at various time instants (black line stands for material interface) for H=0.793 4 m

    图  6  H=0.793 4 m时,不同时刻流场物理量沿y=0.03 m的分布

    Figure  6.  Parameters along y=0.03 m at various time instants for H=0.793 4 m

    表  1  不同比例爆高条件下g 的取值

    Table  1.   The value of g at different scaled heights of explosion

    $\bar H$/(m·kg−1/3)${\bar x_{{{T,1}}}}$/(m·kg−1/3)${\bar x_{{{T,2}}}}$/(m·kg−1/3)gUFCgYi
    0.396 70.793 41.895 80.837 70.361 1
    0.595 10.793 42.444 00.774 20.299 5
    0.793 40.793 43.424 80.638 80.254 0
    0.991 71.586 84.020 80.537 20.218 9
     注: UFC 中数据采用英制单位,本文使用时换算为国际单位制。
    下载: 导出CSV

    表  2  非正规反射起始点坐标${x_{{T_0}}}$

    Table  2.   The ${x_{{T_0}}}$ value of the starting point of IR

    H /m${x_{{T_0}}}$/m
    数值计算理论分析
    0.396 70.333 20.328 4
    0.595 10.473 40.488 4
    0.793 40.620 20.646 4
    0.991 70.796 00.805 9
    下载: 导出CSV

    表  3  沿直线y=0.03 m的物理量峰值

    Table  3.   Peak values of parameters along the line y=0.03 m

    t/sps/(105 Pa)ρs/(kg·m−3)us/(m·s−1)
    NSTAε/%NSTA1ε1/%TA2ε2/%NSTA1ε1/%TA2ε2/%
    4.76×10−440.8236.56−10.447.817.86 0.646.54−16.26728.93688.84−5.50513.35−25.45
    9.96×10−4 9.7310.70 9.974.425.7028.965.71 29.19732.33766.03 4.60482.88−34.06
    1.92×10−3 4.46 4.41 −1.123.193.37 5.643.76 17.87418.37413.92−1.06342.21−18.20
    3.60×10−3 2.51 2.57 2.392.292.36 3.062.59 13.10239.09245.65 2.74229.38 −4.07
     注:NS 为数值结果,TA 为理论结果,ε=(TA-NS)/NS 为偏差。下标 1、2 分别表示基于 LAMBR 和 LAMB 模型的理论结果。
    下载: 导出CSV
  • [1] KREHL P O K. History of shock waves, explosions and impact: a chronological and biographical reference[M]. Springer Science and Business Media, 2008: 1−9.
    [2] EHRHARDT L, BOUTILLIER J, MAGNAN P, et al. Evaluation of overpressure prediction models for air blast above the triple point [J]. Journal of Hazardous Materials, 2016, 311: 176–185. DOI: 10.1016/j.jhazmat.2016.02.051.
    [3] XU W Z, WU W G, LIN Y S. Numerical method and simplified analytical model for predicting the blast load in a partially confined chamber [J]. Computers and Mathematics with Applications, 2018, 76: 284–314. DOI: 10.1016/j.camwa.2018.04.019.
    [4] BEWICK B, FLOOD I, CHEN Z. A neural-network model-based engineering tool for blast wall protection of structures [J]. International Journal of Protective Structures, 2011, 2(2): 159–176. DOI: 10.1260/2041-4196.2.2.159.
    [5] ARMAGHANI D J, HASANIPANAH M, MAHDIYAR A, et al. Airblast prediction through a hybrid genetic algorithm: ANN model [J]. Neural Computing and Applications, 2018, 29(9): 619–629. DOI: 10.1007/s00521-016-2598-8.
    [6] CHAN P C, KLEIN H H. A study of blast effects inside an enclosure [J]. Journal of Fluids Engineering, 1994, 116(3): 450–455. DOI: 10.1115/1.2910297.
    [7] KONG Xiangshao, WU Weiguo, LI Jun, et al. Experimental investigation on characteristics of blast load in partially confined cabin structure [J]. Journal of Shanghai Jiaotong University (Science), 2013, 18(5): 583–589. DOI: 10.1007/s12204-013-1431-0.
    [8] KONG B, LEE K, LEE S, et al. Indoor propagation and assessment of blast waves from weapons using the alternative image theory [J]. Shock Waves, 2016, 26: 75–85. DOI: 10.1007/s00193-015-0581-4.
    [9] WU Z, GUO J, YAO X, et al. Analysis of explosion in enclosure based on improved method of images [J]. Shock Waves, 2017, 27(2): 237–245. DOI: 10.1007/s00193-016-0655-y.
    [10] KANDULA M, FREEMAN R. On the interaction and coalescence of spherical blast waves [J]. Shock Waves, 2008, 18: 21–33. DOI: 10.1007/s00193-008-0134-1.
    [11] 马涛. 空气中爆炸波快速算法研究[D]. 长沙: 国防科学技术大学, 2014: 6−16

    MA Tao. The study for fast computation of blast wave in air [D]. Changsha: National University of Defense Technology, 2014: 6−16.
    [12] NEEDHAM C E. Blast waves [M]. New York: Springer, 2010.
    [13] DOD U S. Structures to resist the effects of accidental explosions: UFC 3-340-02 [R]. USA: Department of Defense, 2008.
    [14] BEN-DOR G. Shock wave reflection phenomena [M]. New York: Springer, 2007: 25−36.
    [15] 易仰贤. 空爆冲击波马赫反射近似计算 [J]. 爆炸与冲击, 1983, 3(2): 44–49. DOI: 10.11883/1001-1455(1983)02-044-06.

    YI Yangxian. Approximate calculation of Mach reflection of explosive shock waves in air [J]. Explosion and Shock Waves, 1983, 3(2): 44–49. DOI: 10.11883/1001-1455(1983)02-044-06.
    [16] HU T C J, GLASS I I. Blast wave reflection trajectories from a height of burst [J]. AIAA Journal, 1986, 24(4): 607–610. DOI: 10.2514/3.9314.
    [17] 徐彬, 张寒虹, 陈志坚, 等. 球面激波在固壁的马赫反射: Ⅱ [J]. 爆炸与冲击, 1988, 8(1): 25–28. DOI: 10.11883/1001-1455(1988)01-0025-04.

    XU Bin, ZHANG Hanhong, CHEN Zhijian, et al. Mach reflection of spherical shock wave on rigid wall: Ⅱ [J]. Explosion and Shock Waves, 1988, 8(1): 25–28. DOI: 10.11883/1001-1455(1988)01-0025-04.
    [18] WANG Li. Mach stem height in pseudo-steady and unsteady Mach reflection [J]. Journal of Fudan University (Natural Science), 2010, 49(4): 513–519. DOI: 10.3788/HPLPB20102206.1351.
    [19] 王力, 韩峰, 陈放, 等. 偏心对称起爆战斗部破片初速的增益 [J]. 爆炸与冲击, 2016, 36(1): 69–74. DOI: 10.11883/1001-1455(2016)01-0069-06.

    WANG Li, HAN Feng, CHEN Fang, et al. Fragments’ velocity of eccentric warhead with double symmetric detonators [J]. Explosion and Shock Waves, 2016, 36(1): 69–74. DOI: 10.11883/1001-1455(2016)01-0069-06.
    [20] WHITHAM G B. A new approach to problems of shock dynamics: part I: two-dimensional problems [J]. Journal of Fluid Mechanics, 1957, 2(2): 145–171. DOI: 10.1017/S002211205700004X.
    [21] ITOH S, OKAZAKI N, ITAYA M. On the transition between regular and Mach reflection in truly non-stationary flows [J]. Journal of Fluid Mechanics, 1981, 108: 383–400. DOI: 10.1017/S0022112081002176.
    [22] SHIN J, WHITTAKER A S, CORMIE D. Incident and normally reflected overpressure and impulse for detonations of spherical high explosive in free air [J]. Journal of Structural Engineering, 2015, 141(12): 04015057. DOI: 10.1061/(ASCE)ST.1943-541X.0001305.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  6626
  • HTML全文浏览量:  2582
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-06
  • 修回日期:  2018-07-19
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回