调控燃烧室燃料初始分布建立稳定旋转爆轰波的方法

雷知迪 陈正武 杨小权 李孝伟 丁珏 翁培奋

雷知迪, 陈正武, 杨小权, 李孝伟, 丁珏, 翁培奋. 调控燃烧室燃料初始分布建立稳定旋转爆轰波的方法[J]. 爆炸与冲击, 2019, 39(9): 092101. doi: 10.11883/bzycj-2018-0208
引用本文: 雷知迪, 陈正武, 杨小权, 李孝伟, 丁珏, 翁培奋. 调控燃烧室燃料初始分布建立稳定旋转爆轰波的方法[J]. 爆炸与冲击, 2019, 39(9): 092101. doi: 10.11883/bzycj-2018-0208
LEI Zhidi, CHEN Zhengwu, YANG Xiaoquan, LI Xiaowei, DING Jue, WENG Peifen. Method based on controlling initial fuel distribution to establish stable rotating detonation wave in combustion chamber[J]. Explosion And Shock Waves, 2019, 39(9): 092101. doi: 10.11883/bzycj-2018-0208
Citation: LEI Zhidi, CHEN Zhengwu, YANG Xiaoquan, LI Xiaowei, DING Jue, WENG Peifen. Method based on controlling initial fuel distribution to establish stable rotating detonation wave in combustion chamber[J]. Explosion And Shock Waves, 2019, 39(9): 092101. doi: 10.11883/bzycj-2018-0208

调控燃烧室燃料初始分布建立稳定旋转爆轰波的方法

doi: 10.11883/bzycj-2018-0208
基金项目: 国家自然科学基金(11472167,11702329);气动噪声控制重点实验室开放课题(ANCL20180103)
详细信息
    作者简介:

    雷知迪(1987- ),男,博士,zhidi_lei@163.com

    通讯作者:

    李孝伟(1969- ),男,博士,副教授,xwli@staff.shu.edu.cn

  • 中图分类号: O389

Method based on controlling initial fuel distribution to establish stable rotating detonation wave in combustion chamber

  • 摘要: 旋转爆轰发动机具有比传统航空航天发动机更高的燃烧效率,近年来引起人们的关注。其中,点火启动过程尤为重要。为达到一次点火就能在燃烧室内建立稳定旋转爆轰波的目的,本文提出通过控制点火前燃料初始分布来建立稳定旋转爆轰波的方法,并基于纳维-斯托克斯方程与10组分27可逆反应基元化学反应模型的数值模拟验证了该方法的可行性。对旋转爆轰波传播特性的研究表明,燃料在发动机燃烧室中的分布是影响旋转爆轰波建立的关键。在燃料喷注压力较低时此影响尤为明显,它决定了爆轰波发展第一周期内波前燃料层厚度。而波前燃料层与波的稳定传播密切相关。基于该方法,本文对燃烧室初始流速为360 m/s,喷注总压0.4 MPa的旋转爆轰发动机实现了点火至稳定爆轰,得到的爆轰波传播平均速度为1 604 m/s,频率为5 347.6 Hz。此外,燃料初始填充率作为燃料初始分布的量化指标,文中给出了它建立稳定旋转爆轰时的临界范围。
  • 图  1  RDE燃烧室示意图

    Figure  1.  Schematic diagram of combustion chamber

    图  2  计算域和燃料的初始分布

    Figure  2.  Computational domain and fuel initial distribution

    图  3  ϕ=20%时x=160 mm,y=85 mm处的压力和温度随时间的变化曲线

    Figure  3.  Pressure and temperature versus time (x=160 mm, y=85 mm, ϕ=20%)

    图  4  入口界面燃料的注入速度(t=200 μs)

    Figure  4.  Injection velocity at inlet (t=200 μs)

    图  5  $\phi $ =20%,$\phi $66.7%燃料的积累(t=230 μs)

    Figure  5.  Fuel distribution for different initial fuel filling rates (t=230 μs)

    图  6  燃料H2质量分数(${Y_{{{\rm{H}}_{\rm{2}}}}}$)云图

    Figure  6.  Mass fraction of H2 (${Y_{{{\rm{H}}_{\rm{2}}}}}$) contours

    图  7  波前燃料层厚度随时间变化

    Figure  7.  The height of the fuel layer versus time

    图  8  t=280 μs、流场温度云图,爆轰波从左往右传播

    Figure  8.  Temperature contours, detonation wave propagates from left to right (Case C, t=280 μs)

    图  9  280、300、320、380 μs时刻入口界面处压强曲线

    Figure  9.  Pressure distribution at t=280 μs, 300 μs, 320 μs, 380 μs

    图  10  燃料初始填充率、波前燃料层厚度和爆轰波稳定性之间的相互影响

    Figure  10.  Schematic of the relationship between initial fuel filling rate, fuel layer height ahead of detonation wave and stability of detonation wave

    表  1  氢气、氧气、氮气混合气体10组分27个可逆反应的化学反应机理

    Table  1.   Chemical reaction mechanisms

    反应序号反应式反应序号反应式
    12O+M↔O2+M15H+HO2↔O2+H2
    2O+H+M↔OH+M16H+HO2↔2OH
    3O+H2↔H+OH17H+H2O2↔HO2+H2
    4O+HO2↔OH+O218H+H2O2↔OH+H2O
    5O+H2O2↔OH+HO219OH+H2↔H+H2O
    6H+2O2↔HO2+O2202OH(+M)↔H2O2(+M)
    7H+O2+H2O↔HO2+H2O212OH↔O+H2O
    8H+O2+AR↔HO2+AR22OH+HO2↔O2+H2O
    9H+O2↔O+OH23OH+HO2↔O2+H2O
    102H+M↔H2+M24OH+HO2↔O2+H2O
    112H+H2↔2H2252HO2↔O2+H2O2
    122H+H2O↔H2+H2O262HO2↔O2+H2O2
    132H+H2O↔H2+H2O27OH+HO2↔O2+H2O
    14H+HO2↔O+H2O
    下载: 导出CSV

    表  2  不同初始填充率下点火结果

    Table  2.   Operation modes of the engine at different initial fuel filling rate

    网格尺寸/mm爆轰波波速/(m∙s−1)C-J 压力/MPa
    理论值1 976.51.61
    实验值1 970.0
    0.51 954.51.63
    11 963.61.54
    21 982.01.50
    下载: 导出CSV

    表  3  不同初始填充率下点火结果

    Table  3.   Operation modes of the engine at different initial fuel filling rate

    ϕd/mm点火结果
    0%~13.3%0~40未形成爆轰波
    13.4%~20%40.2~60稳定旋转爆轰
    21%~26.6%63~79.8不稳定的旋转爆轰
    26.7%~100%80.1~300爆轰波熄灭
    下载: 导出CSV
  • [1] VOITSEKHOVSKII B V. Stationary spin detonation [J]. Doklady Akademii Nauk Sssr, 1959, 129(6): 1254–1256.
    [2] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations [J]. Journal of Propulsion and Power, 2006, 22(6): 1204–1216. DOI: 10.2514/1.17656.
    [3] BYKOVSKII F A, MITROFANOV V V, VEDERNIKOV E F. Continuous detonation combustion of fuel-air mixtures [J]. Combustion, Explosion and Shock Waves, 1997, 33(3): 344–353. DOI: 10.1007/BF02671875.
    [4] BYKOVSKII F A, VEDERNIKOV E F. Continuous detonation of a subsonic flow of a propellant [J]. Combustion, Explosion and Shock Waves, 2003, 39(3): 323–334. DOI: 10.1023/A:102380052.
    [5] NICHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor [J]. Journal of Spacecraft and Rockets, 1966, 3(6): 893–898. DOI: 10.2514/3.28557.
    [6] KINDRACKI J, WOLANSKI P, GUT Z. Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures [J]. Shock Waves, 2011, 21(2): 75–84. DOI: 10.1007/s00193-011-0298-y.
    [7] YANG C, WU X, MA H, et al. Experimental research on initiation characteristics of a rotating detonation engine [J]. Experimental Thermal and Fluid Science, 2016, 71: 154–163. DOI: 10.1016/j.expthermflusci.2015.10.019.
    [8] SHAO Y, LIU M, WANG J. Continuous detonation engine and effects of different types of nozzle on its propulsion performance [J]. Chinese Journal of Aeronautics, 2010, 23(6): 647–652. DOI: 10.1016/S1000-9361(09)60266-1.
    [9] YAO S, WANG J. Multiple ignitions and the stability of rotating detonation waves [J]. Applied Thermal Engineering, 2016, 108(5): 927–936. DOI: 10.1016/j.applthermaleng.2016.07.166.
    [10] 李宝星, 翁春生. 进气总压对连续旋转爆轰发动机爆轰影响的二维数值模拟 [J]. 固体火箭技术, 2016(5): 612–618. DOI: 10.7673/j.issn.1006-2793.2016.05.003.

    LI Baoxing, WENG Chunsheng. Two-dimensional numerical simulation of the inlet stagnation pressure influence on the continuous rotating detonation engine [J]. Journal of Solid Rocket Technology, 2016(5): 612–618. DOI: 10.7673/j.issn.1006-2793.2016.05.003.
    [11] HIPPLER H. Shock wave studies of the reactions, HO+H2O2→H2O+HO2 and HO+HO2→H2O+O2 between 930 and 1680 K [J]. The Journal of Chemical Physics, 1995, 103(9): 3510. DOI: 10.1063/1.470235.
    [12] MARINOV N, WESTBROOK C K, PITZ W. Detailed and global chemical kinetics model for hydrogen [C] // Chan S H. Transport Phenomena in Combustion. USA: Taylor & Francis, 1995: 118−129.
    [13] FUJII J, KUMAZAWA Y, Matsuo A, et al. Numerical investigation on detonation velocity in rotating detonation engine chamber [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2665–2672. DOI: 10.1016/j.proci.2016.06.155.
    [14] SCHWER, D, KAILASANATH, K. Numerical investigation of the physics of rotating-detonation-engines [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2195–2202. DOI: 10.1016/j.proci.2010.07.050.
    [15] GAMEZO V N, DESBORDES D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves [J]. Shock Waves, 1999, 9(1): 11–17. DOI: 10.1007/s001930050134.
    [16] YI T H, ANDERSON D, WILSON D, et al. Numerical study of two-dimensional viscous, chemically reacting flow: AIAA 2005-4868[R]. USA: NASA, 2005. DOI: 10.2514/6.2005-4868.
    [17] DEND L, MA H, XU C, et al. The feasibility of mode control in rotating detonation engine [J]. Applied Thermal Engineering, 2018, 129: 1538–1550. DOI: 10.1016/j.applthermaleng.2017.10.146.
    [18] GINSBERG T, CICCARELLI G, BOCCIO J. Initial hydrogen detonation data from the high-temperature combustion facility: NUREG/CP—0139 [R]. Austria: INIS, 1994.
    [19] KINDRACKI J. Analysis of the experimental results of the initiation of detonation in short tubes with kerosene–oxidizer mixtures [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1515–1523. DOI: 10.1016/j.jlp.2013.09.003.
    [20] BYKOVSKII F A and MITROFANOV V V. Detonation combustion of a gas mixture in a cylindrical chamber [J]. Combustion, Explosion & Shock Waves, 1980, 16(5): 570–578. DOI: 10.1007/BF00794937.
    [21] VASIL'EV A A and Zak D V. Detonation of gas jets [J]. Combustion, Explosion, and Shock Waves, 1986, 22(4): 463–468. DOI: 10.1007/BF00862893.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  6788
  • HTML全文浏览量:  2044
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-12
  • 修回日期:  2019-04-22
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回