火场条件下相邻汽油罐油蒸汽泄漏及爆炸规律

任少云 夏登友

任少云, 夏登友. 火场条件下相邻汽油罐油蒸汽泄漏及爆炸规律[J]. 爆炸与冲击, 2019, 39(7): 072101. doi: 10.11883/bzycj-2018-0215
引用本文: 任少云, 夏登友. 火场条件下相邻汽油罐油蒸汽泄漏及爆炸规律[J]. 爆炸与冲击, 2019, 39(7): 072101. doi: 10.11883/bzycj-2018-0215
REN Shaoyun, XIA Dengyou. Gasoline vapor leakage and explosion law of an oil tank adjacent to fire[J]. Explosion And Shock Waves, 2019, 39(7): 072101. doi: 10.11883/bzycj-2018-0215
Citation: REN Shaoyun, XIA Dengyou. Gasoline vapor leakage and explosion law of an oil tank adjacent to fire[J]. Explosion And Shock Waves, 2019, 39(7): 072101. doi: 10.11883/bzycj-2018-0215

火场条件下相邻汽油罐油蒸汽泄漏及爆炸规律

doi: 10.11883/bzycj-2018-0215
基金项目: 武警学院国家自然科学基金培育项目(ZKJJPY201621);国家重点研发计划项目(2016YFC0800609)
详细信息
    作者简介:

    任少云(1978- ),女,博士,副教授,syren2016@126.com

  • 中图分类号: O389; X915.5

Gasoline vapor leakage and explosion law of an oil tank adjacent to fire

  • 摘要: 油库发生火灾时,临近的油罐内汽油受热形成油蒸汽从呼吸阀泄出,泄漏的油蒸汽与空气混合易点燃,易引起燃烧爆炸事故。本文中以容积为5 000 m3($ \varnothing$22 m×13 m)的汽油罐泄漏油蒸汽为研究对象,以数值模拟为研究方法,研究了汽油蒸汽泄漏及爆炸规律。研究发现:在距地面高1 m的平面上,当无风且呼吸阀泄漏油蒸汽速率为0.25 m/s时,距该罐中心50 m以外就可视作安全区域;当呼吸阀泄漏的油蒸汽速率为0.25 m/s时,风速达到5.0 m/s及以上,不易积聚成爆炸油蒸汽;当无风时,呼吸阀泄漏油蒸汽的速率增大1个量级,油蒸汽积聚达到爆炸下限1/2所需时间缩短2个量级;当风速为3.0 m/s、呼吸阀泄漏油蒸汽速率为0.25 m/s、泄漏时间为200 s、着火点距罐壁1 m时,距点火源距离增大1个量级,超压峰值下降1~2个量级。
  • 图  1  水平向不同距离的体积分数数值模拟与实验结果对比(泄漏流量为10 L/min)

    Figure  1.  Volume fraction comparisons between the calculating results and the experimental values at different locations with different distances from the horizontal direction to the tank center (leakage flow is 10 L/min)

    图  2  计算域

    Figure  2.  Computational domain

    图  3  水平方向不同位置泄漏的油蒸汽体积分数-时间曲线(监测点距地面高1 m)

    Figure  3.  Volume fraction-time curves of leaked gasoline vapor at the different monitoring points with different distances from the horizontal direction to the the tank center and 1 m above the ground

    图  4  风速对泄漏油蒸汽体积分数分布的影响(监测点S3沿水平方向距罐中心20 m,距地面高1 m)

    Figure  4.  Volume fraction-time curves of leaked gasoline vapor at different wind speeds (the monitoring point S3 is 20 m from the horizontal direction to the tank center, 1 m above the ground)

    图  5  不同泄漏速率条件下油蒸汽体积分数-时间曲线(监测点S3沿水平方向距罐中心20 m,距地面高1 m)

    Figure  5.  Volume fraction-time curves of gasoline vapor at different leakage speeds (the monitoring point S3 is 20 m from the horizontal direction to the tank center, 1 m above the ground)

    图  6  水平方向不同位置油蒸汽爆炸超压-时间和温度-时间曲线(监测点距地面高1 m)

    Figure  6.  Gasoline vapor explosion overpressure-time and temperature-time curves at the different monitoring points with the different distances from the horizontal direction to the tank center (the monitoring points are 1 m above the ground)

    图  7  不同水平位置点火时爆炸压力-时间和温度-时间曲线(监测点沿水平方向距罐中心15 m,距地面高1 m)

    Figure  7.  Explosion overpressure-time and temperature-time curves with different ignition locations along the horizontal direction (the monitoring point is 15 m from the horizontal direction to the tank center, 1 m above the ground)

    图  8  不同高度点火时爆炸压力-时间和温度-时间曲线(监测点S2沿水平方向距罐中心15 m,距地面高1 m)

    Figure  8.  Explosion overpressure-time and temperature-time curves with different ignition locations along the vertical direction (the monitoring point S2 is 15 m from the horizontal direction to the tank center, 1 m above the ground)

    图  9  泄漏的油蒸汽体积分数达到爆炸下限1/2的时间随扩散距离的变化(监测点距地面高1 m)

    Figure  9.  Variation of the time to reach 1/2 of the lower flammable limit with the diffusion distance to the tank center in the horizontal direction (the monitoring point is 1 m above the ground)

    图  10  压力波传播距离对超压峰值的影响(距地面高1 m)

    Figure  10.  Influence of distance from the ignition point on peak overpressure (1 m above the ground)

    表  1  不同超压作用条件下的人员伤害和建筑破坏作用

    Table  1.   Personnel injury and building destruction under different overpressure conditions

    Δp/kPa伤害情况破坏作用
    5~6无伤害门、窗玻璃部分破碎
    6~15无伤害压面的门窗玻璃大部分破碎
    15~19.6无伤害窗框损坏
    19.6~29.4人体受到轻微损伤墙裂缝
    下载: 导出CSV
  • [1] ZHANG Peili, LI Jianxiang, GUO Yanbo, et al. The secondary explosion phenomenon of gasoline-air mixture in a confined tunnel [J]. IOP Conference Series: Earth and Environmental Science, 2017, 64(1): 012008. DOI: 10.1088/1755-1315/64/1/012008.
    [2] QI Sheng, DU Yang, WANG Shemao, et al. The effect of vent size and concentration in vented gasoline-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 88–94. DOI: 10.1016/j.jlp.2016.08.005.
    [3] DU Yang, ZHANG Peili, OU Yihong. Effects of humidity, temperature and slow oxidation reactions on the occurrence of gasoline-air explosions [J]. Journal of Fire Protection Engineering, 2013, 23(3): 226–238. doi: 10.1177/1042391513486464
    [4] 任少云. 爆炸下限临界浓度丙烷-空气混合过程及可燃性研究 [J]. 高压物理学报, 2017, 31(5): 629–636. DOI: 10.11858/gywlxb.2017.05.017.

    REN Shaoyun. The mixing and explosion process of propane-air at lower flammable limit in confined vessel [J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 629–636. DOI: 10.11858/gywlxb.2017.05.017.
    [5] LI Guoqing, DU Yang, WANG Shimao, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe [J]. Journal of Hazardous Materials, 2017, 339: 131–142. DOI: 10.1016/j.jhazmat.2017.06.018.
    [6] DU Yang, ZHANG Peili, ZHOU Yi, et al. Suppressions of gasoline-air mixture explosion by non-premixed nitrogen in a closed tunnel [J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 113–120. DOI: 10.1016/j.jlp.2014.07.012.
    [7] 任海亮. 火灾情况下固定顶油罐物理性爆炸研究 [D]. 廊坊: 中国人民武装警察部队学院, 2014: 26−36.

    REN Hailiang. Research on physical explosion of fixed-roof tanks under fire condition [D]. Langfang: The Chinese People’s Armed Police Force Academy, 2014: 26−36.
    [8] 李建华. 灭火战术 [M]. 北京:群众出版社, 2004: 323−325.
    [9] Fluent Inc. Fluent 6.3 user’s guide [M/CD]. Fluent Inc., 2006: 1628−1641.
    [10] 王福军. 计算流体动力学分析CFD软件原理与应用 [M]. 北京: 清华大学出版社, 2004: 7−13.
    [11] 张玉洁. 油气及有毒性气体泄漏扩散危险性研究 [D]. 西安: 长安大学, 2015: 24−26.

    ZHANG Yujie. Study on the leakage and diffusion dangers of oil gas and toxic gases [D]. Xi’an: Chang’an University, 2015: 24−26.
    [12] 王晓程. 常低压储罐呼吸阀呼吸量计算与设置 [J]. 天津化工, 2016, 30(6): 56–58. doi: 10.3969/j.issn.1008-1267.2016.06.022

    WANG Xiaocheng. Breather valve calculation and setup for atmospheric and low-pressure storage tanks [J]. Tianjin Chemical Industry, 2016, 30(6): 56–58. doi: 10.3969/j.issn.1008-1267.2016.06.022
    [13] 傅智敏, 黄金印, 臧娜. 爆炸冲击波伤害破坏作用定量分析 [J]. 消防科学与技术, 2009, 28(6): 390–395. doi: 10.3969/j.issn.1009-0029.2009.06.002

    FU Zhimin, HUANG Jinyin, ZANG Na. Quantitative analysis for consequence of explosion shock wave [J]. Fire Science and Technology, 2009, 28(6): 390–395. doi: 10.3969/j.issn.1009-0029.2009.06.002
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  5559
  • HTML全文浏览量:  2203
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-19
  • 修回日期:  2018-07-19
  • 网络出版日期:  2019-06-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回