用于爆轰驱动的射流起爆实验研究

陆星宇 李进平 陈宏 俞鸿儒

陆星宇, 李进平, 陈宏, 俞鸿儒. 用于爆轰驱动的射流起爆实验研究[J]. 爆炸与冲击, 2019, 39(6): 062102. doi: 10.11883/bzycj-2018-0223
引用本文: 陆星宇, 李进平, 陈宏, 俞鸿儒. 用于爆轰驱动的射流起爆实验研究[J]. 爆炸与冲击, 2019, 39(6): 062102. doi: 10.11883/bzycj-2018-0223
LU Xingyu, LI Jinping, CHEN Hong, YU Hongru. Experimental study on jet initiation for detonation driver[J]. Explosion And Shock Waves, 2019, 39(6): 062102. doi: 10.11883/bzycj-2018-0223
Citation: LU Xingyu, LI Jinping, CHEN Hong, YU Hongru. Experimental study on jet initiation for detonation driver[J]. Explosion And Shock Waves, 2019, 39(6): 062102. doi: 10.11883/bzycj-2018-0223

用于爆轰驱动的射流起爆实验研究

doi: 10.11883/bzycj-2018-0223
基金项目: 国家自然科学基金(11472280);中国科学院“关键技术人才”项目
详细信息
    作者简介:

    陆星宇(1989- ),男,博士研究生,luxingyu@imech.ac.cn

    通讯作者:

    李进平(1978- ),男,博士,高级工程师,lijinping@imech.ac.cn

  • 中图分类号: O381;O358

Experimental study on jet initiation for detonation driver

  • 摘要: 爆轰驱动激波风洞的自由来流模拟范围与驱动气体的爆轰极限密切相关,爆轰极限越宽则模拟范围越大。驱动气体一般是通过点火管进行起爆的,提高点火管的起爆能力可以拓宽爆轰极限。为了提高点火管起爆能力,就点火管口径、点火气体爆轰敏感性和单/双点火管3种因素的影响进行了实验研究。在不同的点火管初始条件下,对驱动段波速进行了测量。结论如下:(1)提高点火管口径可以显著提升起爆能力;(2)点火气体爆轰敏感性对起爆能力有影响,点火管为缩径内型面时,低敏感性气体起爆能力更强,点火管为等径内型面时则低敏感性气体和高敏感性气体的起爆能力大体持平;(3)在保证射流同步的前提下,双点火管能够提高起爆能力,为保证射流同步性需使用化学恰当比的氢氧混气等爆轰敏感性强的点火气体。
  • 图  1  爆轰驱动激波风洞及射流起爆过程示意图

    Figure  1.  Schematics of detonation driven shock tunnel and jet initiation process

    图  2  BBF-100激波管(a)与点火管(b)~(e)

    Figure  2.  BBF-100 shock tube (a) and igniters (b)–(e)

    图  3  不同点火管的驱动气体爆燃压力波或爆轰波速度分布

    Figure  3.  Driver gas deflagration pressure wave or detonation wave velocity distribution of different igniters

    图  4  射流火焰与膜片

    Figure  4.  Jet flame and diaphragms

    图  5  不同点火气体组分对应的驱动气体爆燃压力波或爆轰波速度分布

    Figure  5.  Driver gas deflagration pressure wave or detonation wave velocity distribution for different ignition gas components

    图  6  单/双点火管的驱动气体爆燃压力波或爆轰波速度分布

    Figure  6.  Driver gas deflagration pressure wave or detonation wave velocity distribution in single/double igniters

    图  7  双点火管射流过程((a)~(c)为示意图, (d)~(g)为2CO+O2时序照片,(h)~(k)为2H2+O2时序照片)

    Figure  7.  Double igniters jet process ((a)−(c) are schematics, (d)−(g) are sequential photos of 2CO+O2 jets, (h)−(k) are sequential photos of 2H2+O2 jets)

    表  1  点火管火焰传播时间

    Table  1.   Igniter flame propagation time

    Ingredients $\varnothing $/mm tp,m/ms σtp)/ms tf,m/ms σtf)/ms
    2CO+O2 20 13.370 2.219 13.907 2.253
    2CO+O2 30 12.050 1.293 12.543 1.295
    2H2+O2 30 0.405 0.019 0.395 0.021
    下载: 导出CSV
  • [1] 俞鸿儒, 赵伟, 袁生学. 氢氧爆轰驱动激波风洞的性能 [J]. 气动实验与测量控制, 1993, 7(3): 38–42.

    YU Hongru, ZHAO Wei, YUAN Shengxue. Performance of shock tunnel with H2-O2 detonation driver [J]. Aerodynamic Experiment and Measurement & Control, 1993, 7(3): 38–42.
    [2] OLIVIER H, JIANG Z, YU H R, et al. Detonation-driven shock tubes and tunnels [J]. Progress in Astronautics and Aeronautics, 2002, 198: 135–203.
    [3] 姜宗林, 李进平, 赵伟, 等. 长试验时间爆轰驱动激波风洞技术研究 [J]. 力学学报, 2012, 44(5): 824–831. DOI: 10.6052/0459-1879-12-160.

    JIANG Zonglin, LI Jinping, ZHAO Wei, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824–831. DOI: 10.6052/0459-1879-12-160.
    [4] 俞鸿儒. 大幅度延长激波风洞试验时间 [J]. 中国科学: 物理学·力学·天文学, 2015, 45(9): 094701.

    YU Hongru. A big increase in shock tunnel test times [J]. Science China: Physics, Mechanics and Astronomy, 2015, 45(9): 094701.
    [5] MATSUI H. Characteristics of hydrogen explosions [J]. Journal of Safety Science and Technology, 2005, 1(6): 3–7.
    [6] INADA M, LEE J H, KNYSTAUTAS R. Photographic study of the direct initiation of detonation by a turbulent jet [J]. Progress in Astronautics and Aeronautics, 1993, 153: 253–253.
    [7] SHCHELKIN K L. Some methods for control of detonation [J]. Soviet Journal of Technical Physics, 1940, 10: 823–827.
    [8] SCHAUER F, STUTRUD J, BRADLEY R. Detonation initiation studies and performance results for pulsed detonation engine applications [C] // 39th Aerospace Sciences Meeting and Exhibit. 2001: 1129.
    [9] GRONIG H, OLIVIER H, HABERMANN M. Development of a detonation driver for a shock tunnel [J]. Review of High Pressure Science and Technology, 1998, 7: 879–884. doi: 10.4131/jshpreview.7.879
    [10] LEE S Y, CONRAD C, WATTS J, et al. Deflagration to detonation transition study using simultaneous Schlieren and OH PLIF images [C] // 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000: 3217.
    [11] LINDSTEDT R P, MICHELS H J. Deflagration to detonation transitions and strong deflagrations in alkane and alkene air mixtures [J]. Combustion and Flame, 1989, 76(2): 169–181. doi: 10.1016/0010-2180(89)90065-5
    [12] SANTORO R J, CONRAD C, LEE S Y, et al. Fundamental multi-cycle studies of the performance of pulse detonation engines [C] // Proceedings of the ISABE 2001 Conference. 2001.
    [13] COOPER M, JACKSON S, AUSTIN J, et al. Direct experimental impulse measurements for detonations and deflagrations [J]. Journal of Propulsion and Power, 2002, 18(5): 1033–1041. doi: 10.2514/2.6052
    [14] AKBAR R, THIBAULT P, HARRIS P, et al. Detonation properties of unsensitized and sensitized JP-10 and Jet-A fuels in air for pulse detonation engines [C] // 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000: 3592.
    [15] LI C, KAILASANATH K. Detonation initiation in pulse detonation engines [C] // 41st Aerospace Sciences Meeting and Exhibit. 2003: 1170.
    [16] 张欣玉, 俞鸿儒, 赵伟, 等. 氢氧爆轰直接起始的射流点火方法研究 [J]. 气动实验与测量控制, 1996, 10(2): 63–68.

    ZHANG Xinyu, YU Hongru, ZHAO Wei, et al. Turbulent jet initiation of oxy-hydrogen direct detonation [J]. Aerodynamic Experiment and Measurement & Control, 1996, 10(2): 63–68.
    [17] 林伟, 周进, 林志勇, 等. 热射流起爆过程的试验研究 [C] // 第四届高超声速科技学术会议会议日程及摘要集. 北京, 2011: 12.
    [18] 林伟. 爆震燃烧热射流起爆机理研究 [D]. 长沙: 国防科学技术大学, 2010.
    [19] LEE J H S, HIGGINS A J. Comments on criteria for direct initiation of detonation [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1999, 357(1764): 3503–3521. doi: 10.1098/rsta.1999.0506
    [20] KNYSTAUTAS R, LEE J H, MOEN I, et al. Direct initiation of spherical detonation by a hot turbulent gas jet [C] // Symposium (International) on Combustion. Elsevier, 1979, 17(1): 1235−1245.
    [21] BEZMELNITSIN A V, DOROFEEV S B, YANKIN Y G. Direct comparison of detonation initiation by turbulent jet under confined and unconfined conditions [R]. Moscow, Russia: Russian Research Centre Kurchatov Institute, 1997.
    [22] MEDVEDEV S P, KHOMIK S V, OLIVIER H, et al. Jet-initiated hydrogen detonation phenomena [M] // Shock Waves. Berlin, Heidelberg: Springer, 2005: 807−812.
    [23] THOMAS G. Some observations on the initiation and onset of detonation [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1960): 715–739. DOI: 10.1098/rsta.2011.0368.
    [24] DOROFEEV S B, BEZMELNITSIN A V, SIDOROV V P, et al. Turbulent jet initiation of detonation in hydrogen-air mixtures [J]. Shock Waves, 1996, 6(2): 73–78. DOI: 10.1007/bf02515190.
    [25] CARNASCIALI F, LEE J H S, KNYSTAUTAS R, et al. Turbulent jet initiation of detonation [J]. Combustion and Flame, 1991, 84(1/2): 170–180. DOI: 10.1016/0010-2180(91)90046-e.
    [26] LIEBERMAN D, PARKIN K, SHEPHERD J. Detonation initiation by a hot turbulent jet for use in pulse detonation engines [C] // 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2002: 3909.
    [27] LEWIS B, von ELBE G. Combustion, flames and explosions of gases [M]. Amsterdam: Elsevier North-Holland Press, 2012.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  6420
  • HTML全文浏览量:  2020
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-07-26
  • 网络出版日期:  2019-05-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回