高压氢气泄漏自燃形成喷射火的实验研究

闫伟阳 潘旭海 汪志雷 华敏 蒋益明 王清源 蒋军成

闫伟阳, 潘旭海, 汪志雷, 华敏, 蒋益明, 王清源, 蒋军成. 高压氢气泄漏自燃形成喷射火的实验研究[J]. 爆炸与冲击, 2019, 39(11): 115402. doi: 10.11883/bzycj-2018-0394
引用本文: 闫伟阳, 潘旭海, 汪志雷, 华敏, 蒋益明, 王清源, 蒋军成. 高压氢气泄漏自燃形成喷射火的实验研究[J]. 爆炸与冲击, 2019, 39(11): 115402. doi: 10.11883/bzycj-2018-0394
YAN Weiyang, PAN Xuhai, WANG Zhilei, HUA Min, JIANG Yiming, WANG Qingyuan, JIANG Juncheng. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire[J]. Explosion And Shock Waves, 2019, 39(11): 115402. doi: 10.11883/bzycj-2018-0394
Citation: YAN Weiyang, PAN Xuhai, WANG Zhilei, HUA Min, JIANG Yiming, WANG Qingyuan, JIANG Juncheng. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire[J]. Explosion And Shock Waves, 2019, 39(11): 115402. doi: 10.11883/bzycj-2018-0394

高压氢气泄漏自燃形成喷射火的实验研究

doi: 10.11883/bzycj-2018-0394
基金项目: 国家重点研发计划(2017YFC0804700,2016YFC0800100)
详细信息
    作者简介:

    闫伟阳(1992- ),男,硕士研究生,455314754@qq.com

    通讯作者:

    潘旭海(1977- ),男,博士,教授,xuhaipan@njtech.edu.cn

  • 中图分类号: O389

Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire

  • 摘要: 为了探究高压氢气泄漏发生自燃时所需的临界初始释放压力随管道长度的变化规律,了解管内自燃火焰向管外喷射火焰转变的发展过程,本文利用压力、光电以及高速摄像等测试系统展开实验研究。实验结果表明:当管道长度相同,初始释放压力较低时,氢气泄漏不容易发生自燃;随着管道长度的增加,氢气发生自燃时的临界初始释放压力先缓慢减小后迅速增大;当管道长度一定时,初始释放压力越大,激波传播速度越快,氢气管内自燃的位置距离爆破片越近;气流通过激波马赫盘后,火焰燃烧加剧;随着时间的增加,火焰长度呈现先增大后逐渐减小的变化趋势,喷射火焰尖端的平均传播速度逐渐减小;火焰宽度呈现先增大后迅速减小至稳定值的变化规律。
  • 图  1  高压氢气泄漏自燃的扩散点火理论

    Figure  1.  Diffusion ignition theory of high-pressure hydrogen self-ignition

    图  2  高压氢气泄漏模拟实验装置示意图

    1. Pressure reducing valve;2. High-pressure pneumatic valve;3. Controller;4. Pressure gauge;5. Tanks;6. Vacuum pump;7. Rupture disc;8. Data processor;9. High-speed camera;10. Computer

    Figure  2.  Illustration of the experimental platform

    图  3  部分零件实物图

    Figure  3.  Some actual of parts

    图  4  氢气自燃时管道长度与初始释放压力的关系

    Figure  4.  Pipe lengths vs. initial release pressure of hydrogen self-ignition

    图  5  压力传感器P1监测到的压力波形变化

    Figure  5.  Pressure waveform variation monitored by pressure sensor P1

    图  6  管道长度1 700 mm下的2组实验压力图

    Figure  6.  Pressure of pipe length 1 700 mm

    图  7  管道长度1 700 mm下的2组实验光电图

    Figure  7.  Photo-electricity of pipe length 1 700 mm

    图  8  管长700 mm不同初始释放压力下的激波传播速度图

    Figure  8.  Shock wave propagation speed of pipe length 700 mm under different initial release pressures

    图  9  管内火焰向管外喷射火焰转变的过程图

    Figure  9.  Transition of flame inside pipe to the jet flame outside pipe

    图  10  管长700 mm初始释放压力7.08 MPa下管外火焰的发展图

    Figure  10.  Flame development process of pipe length 700 mm and initial release pressure 7.08 MPa

    图  11  管长300 mm和700 mm初始释放压力相近的管外火焰形态变化

    Figure  11.  Flame development process with similar initial release pressure of 300 mm and 700 mm

    图  12  管长1 200、1 700和2 200 mm初始释放压力相近的管外火焰形态变化

    Figure  12.  Flame development process with similar initial release pressure of 1 200, 1 700 and 2 200 mm

  • [1] NICOLETTI G, ARCURI N, NICOLETTI G, et al. A technical and environmental comparison between hydrogen and some fossil fuels [J]. Energy Conversion and Management, 2015, 89(89): 205–213.
    [2] ONO R, ODA T. Spark ignition of hydrogen-air mixture [C] // 2008: 012003. DOI: https://doi.org/10.1088/1742-6596/142/1/012003.
    [3] XU B P, WEN J X, DEMBELE S, et al. The effect of pressure boundary rupture rate on spontaneous ignition of pressurized hydrogen release [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 279–287. DOI: 10.1016/j.jlp.2008.07.007.
    [4] WOLINSKI M, WOIANSKI P. Investigation into the mechanism of the diffusion ignition of a combustible gas flowing into an oxidizing atmosphere [C] // Proceedings of the 14th symposium on combustion, 1973: 1217−1223.
    [5] FREDERICK L D, MARCOS C, ZHENWEI Z, et al. Spontaneous ignition of pressurized releases of hydrogen and natural gas into air [J]. Combustion Science and Technology, 2007, 179(4): 663–694.
    [6] MOGI T, WADA Y, OGATA Y, et al. Self-ignition and flame propagation of high-pressure hydrogen jet during sudden discharge from a pipe [J]. International Journal of Hydrogen Energy, 2009, 34(14): 5810–5816. DOI: 10.1016/j.ijhydene.2009.04.079.
    [7] MOGI T, KIM D, SHIINA H, et al. Self-ignition and explosion during discharge of high-pressure hydrogen [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 199–204. DOI: 10.1016/j.jlp.2007.06.008.
    [8] LEE H J, KIM Y R, KIM S H, et al. Experimental investigation on the self-ignition of pressurized hydrogen released by the failure of a rupture disk through tubes [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2351–2358. DOI: 10.1016/j.proci.2010.06.040.
    [9] KITABAYASHI N, WADA Y, MOGI T, et al. Experimental study on high pressure hydrogen jets coming out of tubes of 0.1-4.2 m in length [J]. International Journal of Hydrogen Energy, 2013, 38(19): 8100–8107. DOI: 10.1016/j.ijhydene.2012.10.040.
    [10] 段强领. 高压氢气泄漏自燃机理及其火焰传播特性实验研究[D]. 合肥: 中国科学技术大学, 2016.

    DUAN Qiangling. Experimental study of spontaneous ignition and subsequent flame propagation of high-pressure hydrogen release [D]. Heifei: University of Science and Technology of China, 2016.
    [11] GOLUB V V, BAKLANOV D I, BAZHENOVA T V, et al. Shock-induced ignition of hydrogen gas during accidental or technical opening of high-pressure tanks [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4): 439–446.
    [12] GOLUB V V, BAKLANOV D I, GOLOVASTOV S V, et al. Mechanisms of high-pressure hydrogen gas self-ignition in tubes [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 185–198. DOI: 10.1016/j.jlp.2007.06.012.
    [13] KIM Y R, LEE H J, KIM S, et al. A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2057–2064. DOI: 10.1016/j.proci.2012.07.020.
    [14] GRUNE J, SEMPERT K, KUZNETSOV M, et al. Experimental investigation of flame and pressure dynamics after spontaneous ignition in tube geometry [J]. International Journal of Hydrogen Energy, 2014, 39(35): 20396–20403. DOI: 10.1016/j.ijhydene.2014.05.046.
    [15] KANEKO W, SHII K. Effects of diaphragm rupturing conditions on self-ignition of high-pressure hydrogen [J]. International Journal of Hydrogen Energy, 2016, 41(25): 10969–10975. DOI: 10.1016/j.ijhydene.2016.04.211.
    [16] KANEKO W, ISHII K. An experimental study on the mechanism of self-ignition of high-pressure hydrogen [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7374–7379. DOI: 10.1016/j.ijhydene.2016.06.046.
    [17] XU B P, WEN J X. Numerical study of spontaneous ignition in pressurized hydrogen release through a length of tube with local contraction [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17571–17579. DOI: 10.1016/j.ijhydene.2012.04.150.
    [18] 陈强. 激波管流动的理论和实验技术[D]. 合肥: 中国科学技术大学, 1979.

    CHEN Qiangling. Theory and experimental techniques of shock tube flows [D]. Heifei: University of Science and Technology of China, 1979.
    [19] SPENCE D A, WOODS B A. A review of theoretical treatments of shock-tube attenuation [J]. Journal of Fluid Mechanics, 2006, 19(2): 161–174.
    [20] LEE B J, JEUNG I S. Numerical study of spontaneous ignition of pressurized hydrogen released by the failure of a rupture disk into a tube [J]. International Journal of Hydrogen Energy, 2009, 34(20): 8763–8769. DOI: 10.1016/j.ijhydene.2009.08.034.
    [21] SHEN X, SUN J. Numerical simulation on the spontaneous ignition of leaking high pressure hydrogen from terminal unit [J]. Physics Procedia, 2012, 33(6): 1833–1841.
    [22] STUDER E, JAMOIS D, JALLAIS S, et al. Properties of large-scale methane/hydrogen jet fires [J]. International Journal of Hydrogen Energy, 2009, 34(23): 9611–9619. DOI: 10.1016/j.ijhydene.2009.09.024.
  • 加载中
图(12)
计量
  • 文章访问数:  6379
  • HTML全文浏览量:  1638
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2019-02-12
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回