超音速来流中爆轰波衍射和二次起爆过程研究

李红宾 李建玲 熊姹 范玮 赵磊 韩文虎

李红宾, 李建玲, 熊姹, 范玮, 赵磊, 韩文虎. 超音速来流中爆轰波衍射和二次起爆过程研究[J]. 爆炸与冲击, 2019, 39(4): 041401. doi: 10.11883/bzycj-2018-0464
引用本文: 李红宾, 李建玲, 熊姹, 范玮, 赵磊, 韩文虎. 超音速来流中爆轰波衍射和二次起爆过程研究[J]. 爆炸与冲击, 2019, 39(4): 041401. doi: 10.11883/bzycj-2018-0464
LI Hongbin, LI Jianling, XIONG Cha, FAN Wei, ZHAO Lei, HAN Wenhu. Numerical investigation on detonation diffraction and re-initiationprocesses in a supersonic inflow[J]. Explosion And Shock Waves, 2019, 39(4): 041401. doi: 10.11883/bzycj-2018-0464
Citation: LI Hongbin, LI Jianling, XIONG Cha, FAN Wei, ZHAO Lei, HAN Wenhu. Numerical investigation on detonation diffraction and re-initiationprocesses in a supersonic inflow[J]. Explosion And Shock Waves, 2019, 39(4): 041401. doi: 10.11883/bzycj-2018-0464

超音速来流中爆轰波衍射和二次起爆过程研究

doi: 10.11883/bzycj-2018-0464
基金项目: 科学挑战专题(TZ2016001);国家自然科学基金(11572258,91441201);NSFA联合基金(U1730134);冲击波物理与爆轰物理重点实验室基金(6142A0304020617);中央高校基本科研业务费专项资金(3102017Ax006)
详细信息
    作者简介:

    李红宾(1990- ),男,博士,lihongbin@mail.nwpu.edu.cn

    通讯作者:

    李建玲(1983- ),女,博士,教授,lijianling@mail.nwpu.edu.cn

  • 中图分类号: O381;V231

Numerical investigation on detonation diffraction and re-initiationprocesses in a supersonic inflow

  • 摘要:

    预爆管技术被广泛地应用在爆轰波发动机的起爆过程中,但是在超音速来流中基于预爆管技术起始爆轰波的研究并未被广泛地开展。基于此,本文中数值研究了横向超音速来流对半自由空间内爆轰波的衍射和自发二次起爆、及管道内的衍射和壁面反射二次起爆两种现象的影响。数值模拟的控制方程为二维欧拉方程,空间上使用五阶WENO格式进行数值离散,采用带有诱导步的两步链分支化学反应模型。所模拟的爆轰波具有规则的胞格结构,对应于用惰性气体高度稀释过的可爆混合物中形成的爆轰波。结果表明:在半自由空间内,在本文所模拟的几何尺寸下,爆轰波并未成功发生二次起爆现象,但是爆轰波的自持传播距离随着横向超音速来流强度的增强而增加。在核心的三角形流动区域外,波面诱导产生了更多的横波结构;在管道内,横向的超音速来流在逆流侧对出口气流产生了压缩作用,能有效提高波面压力,因此反射后的激波压力也比较高。在同样的几何尺寸下,爆轰波在静止和超音速(Ma=2.0)气流中分别出现了二次起爆失败和成功两种现象,这是由于在超音速来流中化学反应面的褶皱诱导产生了横波结构,横波与管壁以及其他横波之间的碰撞提高了前导激波的强度,并最终促进了爆轰波在超声速流主管道内的成功起始。

  • 图  1  物理模型

    Figure  1.  Physical model

    图  2  稳定爆轰波的规则胞格结构

    Figure  2.  Cellular structures of regular detonation wave

    图  3  不同管径下的爆轰波胞格结构

    Figure  3.  Detonation cellular structures in channels with different widths

    图  4  管径与爆轰波胞格大小不匹配时的胞格结构

    Figure  4.  Cellular structures of detonation wave when the channel width is inappropriate

    图  5  爆轰波在半自由空间内的静止气流中的衍射现象

    Figure  5.  Diffraction of detonation wave in the static flow

    图  6  爆轰波在超音速气流(Ma=2.0)中的衍射过程(红线近似表示火焰面位置)

    Figure  6.  Diffraction process of detonation wave in the supersonic (Ma=2.0) flow (the red line indicates the flame front)

    图  7  爆轰波在超音速气流(Ma=4.0)中的衍射过程(红线近似表示火焰面位置)

    Figure  7.  Diffraction process of detonation wave in the supersonic (Ma=4.0) flow (the red line indicates the flame front)

    图  8  爆轰波在静止气流和超音速气流中的衍射过程(红色细实线近似表示火焰面位置)

    Figure  8.  Diffraction and re-initiation processes of detonation wave in the static and supersonic flow(the red line indicates the flame front)

    图  9  爆轰波衍射出口处压力波形比较(红色细实线近似表示火焰面位置)

    Figure  9.  Comparison of shock pressures in the supersonic (Ma=2.0) and static flow (red line indicates the flame front)

    图  10  爆轰波在静止气流中衍射过程的胞格轨迹

    Figure  10.  Cellular structures of detonation diffraction in the static flow

    图  11  爆轰波在超音速(Ma=2.0)气流中衍射和二次起爆过程的胞格轨迹

    Figure  11.  Cellular structures of detonation diffraction in the supersonic flow (Ma=2.0)

    图  12  爆轰波在超音速气流中(Ma=4.0)的衍射和二次起爆现象

    Figure  12.  Diffraction and re-initiation processes in the supersonic inflow (Ma=4.0)

  • [1] 范玮, 李建玲. 爆震组合循环发动机研究导论[M]. 北京: 科学出版社, 2014: 1−24.
    [2] ALEXANDROV V, VEDESHKIN G, KRAIKO A, et al. Supersonic pulsed detonation ramjet engine (SPDRE) and the way of operation of SPDRE: 2157909[R]. Russion, 1999-05-26.
    [3] WILSON D, LU F. Multi-mode pulsed detonation propulsion system: 6857261 [P]. US, 2005-02-22.
    [4] LI J L, FAN W, QIU H, et al. Preliminary study of a pulse normal detonation wave engine [J]. Aerospace Science and Technology, 2010, 14(3): 161–167. DOI: 10.1016/j.ast.2009.12.002.
    [5] VASIL’EV A A, ZVEGINTSEV V I, NALIVAICHENKO D G. Detonation waves in a reactive supersonic flow [J]. Combustion, Explosion and Shock Waves, 2006, 42(5): 568–581. DOI: 10.1007/s10573-006-0089-4.
    [6] ISHII K, KATAOKA H, KOJIMA T. Initiation and propagation of detonation waves in combustible high speed flows [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2323–2330. DOI: 10.1016/j.proci.2008.05.029.
    [7] VASIL’EV A A. The basic results on re-initiation processes in diffracting multifront detonations. Part Ⅰ [J]. Eurasian Chemico-Technological Journal, 2003, 5(4): 279–289. DOI: https://doi.org/10.18321/ectj315.
    [8] SORIN R, ZITOUN R, KHASAINOV B, et al. Detonation diffraction through different geometries [J]. Shock Waves, 2009, 19(1): 11–23. DOI: 10.1007/s00193-008-0179-1.
    [9] LEE J H S. The detonation phenomenon[M]. UK: Cambridge University Press, 2008: 297−368.
    [10] MURRAY S B, LEE J H S. On the transformation of planar detonation to cylindrical detonation [J]. Combustion & Flame, 1983, 52(83): 269–289. DOI: 10.1016/0010-2180(83)90138-4.
    [11] CAI X D, DEITERDING R, LIANG J H, et al. Diffusion and mixing effects in hot jet initiation and propagation of hydrogen detonations [J]. Journal of Fluid Mechanics, 2018, 836: 324–351. DOI: 10.1017/jfm.2017.770.
    [12] GALLIER S, PALUD F L, PINTGEN F, et al. Detonation wave diffraction in H2-O2-Ar mixtures [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2781–2789. DOI: 10.1016/j.proci.2016.06.090.
    [13] NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. DOI: 10.1080/13647830500307758.
    [14] JIANG G, SHU C. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
    [15] KIM D, KWON J H. A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis [J]. Journal of Computational Physics, 2005, 210(2): 554–583. DOI: 10.1016/j.jcp.2005.04.023.
    [16] 滕宏辉, 刘云峰, 姜宗林. 一维脉冲爆轰波的能量释放规律研究 [J]. 空气动力学学报, 2012, 30(6): 731–736

    TENG Honghui, LIU Yunfeng, JIANG Zonglin. Energy release law of one-dimension pulse detonation wave [J]. Acta Aerodynamic Sinica, 2012, 30(6): 731–736
    [17] JIANG Z L, HAN G L, W C, et al. Self-organized generation of transverse waves in diverging cylindrical detonations [J]. Combustion and Flame, 2009, 156(8): 1653–1661. DOI: 10.1016/j.combustflame.2009.02.012.
    [18] PINTGEN F. Detonation diffraction in mixtures with various degrees of instability [D]. California: California Institute of Technology, 2005: 1−16.
  • 加载中
图(12)
计量
  • 文章访问数:  5817
  • HTML全文浏览量:  2520
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-02-18
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回