应变率对光圆钢筋与混凝土“粘结-滑移”行为影响的实验研究

付应乾 余效儒 董新龙 周风华 李平

付应乾, 余效儒, 董新龙, 周风华, 李平. 应变率对光圆钢筋与混凝土“粘结-滑移”行为影响的实验研究[J]. 爆炸与冲击, 2019, 39(6): 064102. doi: 10.11883/bzycj-2018-0513
引用本文: 付应乾, 余效儒, 董新龙, 周风华, 李平. 应变率对光圆钢筋与混凝土“粘结-滑移”行为影响的实验研究[J]. 爆炸与冲击, 2019, 39(6): 064102. doi: 10.11883/bzycj-2018-0513
FU Yingqian, YU Xiaoru, DONG Xinlong, ZHOU Fenghua, LI Ping. An experimental study of dynamic bond-slip behaviors of plain steel barsin concrete at different strain rates[J]. Explosion And Shock Waves, 2019, 39(6): 064102. doi: 10.11883/bzycj-2018-0513
Citation: FU Yingqian, YU Xiaoru, DONG Xinlong, ZHOU Fenghua, LI Ping. An experimental study of dynamic bond-slip behaviors of plain steel barsin concrete at different strain rates[J]. Explosion And Shock Waves, 2019, 39(6): 064102. doi: 10.11883/bzycj-2018-0513

应变率对光圆钢筋与混凝土“粘结-滑移”行为影响的实验研究

doi: 10.11883/bzycj-2018-0513
基金项目: 国家自然科学基金(11390361)
详细信息
    作者简介:

    付应乾(1986- ),男,博士研究生,526524376@qq.com

    通讯作者:

    周风华(1964- ),男,博士,教授,博导,zhoufenghua@nbu.edu.cn

  • 中图分类号: O347

An experimental study of dynamic bond-slip behaviors of plain steel barsin concrete at different strain rates

  • 摘要: 为研究应变率对钢筋与混凝土界面粘结性能的影响,利用高速拉伸试验机进行了光圆钢筋的动态拔出实验。通过合理设计加载夹具和测试方法,得到不同应变率下光圆钢筋的“粘结-滑移”全程曲线。实验结果表明:随着应变率的增大,钢筋-混凝土界面的粘结强度显著提高,且界面失效形式由拔出失效为主转变为混凝土试件的破裂破坏为主;粘结强度的动态增强因子(f DIF)随应变率的增长斜率明显可以分为低应变率和高应变率两个区段。低应变率下,fDIF增长较为缓慢;而高应变率下,f DIF快速增长;转变应变率约为33 s−1
  • 图  1  典型的准静态粘结-滑移曲线[11]

    Figure  1.  A typical quasi-static “bond-slip” curves

    图  2  高速拉伸试验机及其加载原理

    Figure  2.  High-speed tensile machine and its loading mechanism

    图  3  试件及拔出装置

    Figure  3.  Specimen and pullout loading device

    图  4  实验测量装置

    Figure  4.  Experimental devices

    图  5  采用不同方式测量得到的粘结力及相对滑移时间曲线(加载速度1 000 mm/s)

    Figure  5.  Measured history curves of bond force and relative slip (loading speed 1 000 mm/s)

    图  6  粘接力-滑移测试曲线的重复性检验(加载速度1 000 mm/s)

    Figure  6.  Three “bond-slip” curves for the case of loading speed 1 000 mm/s

    图  7  不同应变率下的典型粘结-滑移曲线

    Figure  7.  Typical bond-slip curves at different strain rate

    图  8  粘结强度动态增长因子(fDIF)与应变率的关系

    Figure  8.  Relationship between fDIF and loading strain rate

    图  9  滑移界面的混凝土和钢筋形貌

    Figure  9.  Morphology of concrete and rebar

    表  1  试验结果综合

    Table  1.   collection of the test results

    加载速度/(mm·s−1 名义应变率/s−1 编号 粘结强度/MPa 滑移应变εs /% 名义失效应变εf /% 破坏形态
    0.03 0.001 01 8.85 0.88 10.95 拔出
    02 8.44 1.27 12.3 拔出
    03 10.9 0.95 11.2 拔出
    0.30 0.010 01 9.59 0.88 14.2 拔出
    02 11.4 0.97 11.6 劈裂
    03 9.88 0.89 12.8 拔出
    1.00 0.030 01 12.4 1.12 11.5 拔出
    02 10.9 0.80 13.6 拔出
    03 12.8 1.36 14.6 拔出
    10.0 0.333 01 14.1 1.67 11.7 拔出
    02 14.9 1.35 12.1 劈裂
    03 11.2 2.03 15.4 拔出
    100 3.333 01 11.2 3.41 14.7 拔出
    02 11.8 1.89 12.9 拔出
    03 10.4 1.33 16.8 拔出
    1 000 33.33 01 14.8 1.85 23.2 拔出
    02 12.4 0.93 31.6 拔出
    03 12.2 2.18 30.9 拔出
    3 000 100.0 01 19.0 2.91 劈裂
    02 21.2 2.07 劈裂
    03 19.9 1.91 劈裂
    5 000 166.7 01 20.7 3.10 劈裂
    02 21.3 2.35 劈裂
    03 24.0 2.91 劈裂
    10 000 333.3 01 26.3 3.33 劈裂
    02 23.2 4.26 劈裂
    03 26.8 2.79 劈裂
    下载: 导出CSV
  • [1] MIRZA S M. Study of bond stress-slip relationships in reinforced concrete [J]. Aci Journal, 1979, 76(1): 19–46. DOI: 10.1016/0022-3115(79)90116-8.
    [2] DÍAZ T, JOSÉ R, HAACH V G. Equivalent stress-strain law for embedded reinforcements considering bond-slip effects [J]. Engineering Structures, 2018, 165: 247–253. DOI: 10.1016/j.engstruct.2018.03.045.
    [3] GAO X, LI N, REN X. Analytic solution for the bond stress-slip relationship between rebar and concrete [J]. Construction and Building Materials, 2019, 197: 385–97. DOI: 10.1016/j.conbuildmat.2018.11.206.
    [4] GAMBAROVA P G, ROSATI G P. Bond and splitting in reinforced concrete: test results on bar pull-out [J]. Materials & Structures, 1996, 29(5): 267–276. DOI: 10.1007/BF02486361.
    [5] MO Y L, CHAN J. Bond and slip of plain rebars in concrete [J]. Journal of Materials in Civil Engineering, 1996, 8(4): 208–211. DOI: 10.1061/(ASCE)0899-1561(1996)8:4(208).
    [6] FELDMAN L R, BARTLETT F M. Bond stresses along plain steel reinforcing bars in pullout specimens [J]. Aci Structural Journal, 2007, 104(6): 685–692. DOI: 10.1002/tal.417.
    [7] LUTZ L R A, GERGELY P. Mechanics of bond and slip of deformed bars in concrete [J]. ACI Journal, 1967, 64(11): 711–721. DOI: 10.14359/7600.
    [8] LUNDGREN K. Bond between ribbed bars and concrete. Part 1: modified model [J]. Magazine of Concrete Research, 2005, 57(7): 371–382. DOI: 10.1680/macr.2005.57.7.371.
    [9] BOMPA D V, ELGHAZOULI A Y. Bond-slip response of deformed bars in rubberised concrete [J]. Construction & Building Materials, 2017, 154: 884–898. DOI: 10.1016/j.conbuildmat.2017.08.016.
    [10] KIM S W, YUN H D, PARK W S, et al. Bond strength prediction for deformed steel rebar embedded in recycled coarse aggregate concrete [J]. Materials & Design, 2015, 83: 257–269. DOI: 10.1016/j.matdes.2015.06.008.
    [11] MICHAL M, KEUSER M, SOLOMOS G, et al. Experimental investigation of bond strength under high loading rates[C] // European Physical Journal Web of Conferences. European Physical Journal Web of Conferences, 2015. DOI: 10.1051/epjconf/20159401044.
    [12] ESFAHANI M R, RANGAN B V. Local bond strength of reinforcing bars in normal strength and high-strength concrete (HSC) [J]. ACI Structural Journal, 1998, 95(2): 96–106. DOI: 10.14359/530.
    [13] SULAIMAN M F, MA C K, APANDI N M, et al. A review on bond and anchorage of confined high-strength concrete [J]. Structures, 2017, 11: 97–109. DOI: 10.1016/j.istruc.2017.04.004.
    [14] GIURIANI E, SCHUMM C, PLIZZARI G. Role of stirrups and residual tensile strength of cracked concrete on bond [J]. Journal of Structural Engineering, 1991, 117(1): 1–18. DOI: 10.1061/(ASCE)0733-9445(1991)117:1(1).
    [15] AHMED K, SIDDIQI Z A, ASHRAF M, et al. Effect of rebar cover and development length on bond and slip in high strength concrete [J]. Pakistan Journal of Engineering and Applied Sciences, 2008, 2: 79–87.
    [16] 郑晓燕, 吴胜兴. 动荷载下锈蚀钢筋混凝土粘结滑移特性的试验研究 [J]. 土木工程学报, 2006, 39(6): 42–46. DOI: 10.3321/j.issn:1000-131X.2006.06.007.

    ZHENG Xiaoyan, WU Shengxing. An experimental study on the bond-slip behavior of corroded steel bars in concrete under dynamic loads [J]. China Civil Engineering Journal, 2006, 39(6): 42–46. DOI: 10.3321/j.issn:1000-131X.2006.06.007.
    [17] ZHANG W P, CHEN H, GU X L. Bond behaviour between corroded steel bars and concrete under different strain rates [J]. Magazine of Concrete Research, 2015, 68(7): 1–15. DOI: 10.1680/macr.15.00174.
    [18] HANSEN R J, LIEPINS A A. Behavior of bond under dynamic loading [J]. ACI Structural Journal, 1959, 59(4): 563–584. DOI: 10.14359/7929.
    [19] WEATHERSBY J H. Investigation of bond slip between concrete and steel reinforcement under dynamic loading conditions [D]. Baton Rouge: Louisiana State University, 2003: 1−263.
    [20] VOS E. Influence of loading rate and radial pressure on bond in reinforced concrete [D]. Delft: Delft University of Technology, 1983: 1−263.
    [21] SOLOMOS G, BERRA M. Rebar pullout testing under dynamic Hopkinson bar induced impulsive loading [J]. Materials & Structures, 2010, 43(1-2): 247–260. DOI: 10.1617/s11527-009-9485-z.
    [22] YAN C. Bond between reinforcing bars and concrete under impact loading [D]. Vancouver: University of British, 1992.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  5793
  • HTML全文浏览量:  2074
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-01-22
  • 网络出版日期:  2019-05-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回