活性粉末混凝土抗多次侵彻实验研究及数值预测

徐世烺 吴平 周飞 李庆华 曾田 蒋霄

徐世烺, 吴平, 周飞, 李庆华, 曾田, 蒋霄. 活性粉末混凝土抗多次侵彻实验研究及数值预测[J]. 爆炸与冲击, 2021, 41(6): 063301. doi: 10.11883/bzycj-2020-0165
引用本文: 徐世烺, 吴平, 周飞, 李庆华, 曾田, 蒋霄. 活性粉末混凝土抗多次侵彻实验研究及数值预测[J]. 爆炸与冲击, 2021, 41(6): 063301. doi: 10.11883/bzycj-2020-0165
XU Shilang, WU Ping, ZHOU Fei, LI Qinghua, ZENG Tian, JIANG Xiao. Experimental investigation and numerical prediction on resistance of reactive powder concrete to multiple penetration[J]. Explosion And Shock Waves, 2021, 41(6): 063301. doi: 10.11883/bzycj-2020-0165
Citation: XU Shilang, WU Ping, ZHOU Fei, LI Qinghua, ZENG Tian, JIANG Xiao. Experimental investigation and numerical prediction on resistance of reactive powder concrete to multiple penetration[J]. Explosion And Shock Waves, 2021, 41(6): 063301. doi: 10.11883/bzycj-2020-0165

活性粉末混凝土抗多次侵彻实验研究及数值预测

doi: 10.11883/bzycj-2020-0165
基金项目: 国家自然科学基金(51678522,51622811)
详细信息
    作者简介:

    徐世烺(1953- ),男,博士,教授,slxu@zju.edu.cn

    通讯作者:

    李庆华(1981- ),女,博士,教授,liqinghua@zju.edu.cn

  • 中图分类号: O383

Experimental investigation and numerical prediction on resistance of reactive powder concrete to multiple penetration

  • 摘要: 活性粉末混凝土(reactive powder concrete,RPC)具有超高的强度和优异的阻裂性能。为了研究RPC在多次冲击荷载下的损伤规律,采用25 mm口径滑膛炮对直径为600 mm、高600 mm的RPC圆柱形靶体进行了多次侵彻实验,得到了每次侵彻后靶体的破坏数据,并根据实验数据确定了Forrestal经验公式中的相关系数。基于K&C本构模型和现有RPC基本力学性能的实验数据,修正了K&C模型的强度面参数、损伤参数、状态方程参数、损伤演化模型以及应变率效应相关参数,系统地确定了RPC的K&C模型参数。采用LS-DYNA软件中的重启动功能模拟了弹体多次侵彻RPC靶体的破坏结果,模拟结果与实验结果基本一致,验证了模拟方法的有效性。对长2 200 mm、宽2 200 mm、高1 260 mm的RPC靶体抗侵彻实验进行了数值预测,得到了侵彻深度与弹速之间的关系、弹体贯穿靶体时的极限速度以及弹体侵彻过程中的峰值加速度。
  • 图  1  弹体尺寸

    Figure  1.  Projectile sizes

    图  2  侵彻实验设备布置

    Figure  2.  Arrangement of penetration experiment equipments

    图  3  高速摄影机记录的弹体撞击靶体过程

    Figure  3.  Process of the projectile impacting the targetrecorded by a high-speed camera

    图  4  2%钢纤维掺量下不同强度RPC的Forrestal公式中的S*

    Figure  4.  S* in the Forrestal formula of RPC with differentcompressive strengths at 2% steel fiber content

    图  5  RPC多次侵彻实验结果

    Figure  5.  Experimental results of RPC multiple penetrations

    图  6  多次侵彻实验后的靶体剖面

    Figure  6.  Profile of targets after multiple penetration experiments

    图  7  有限元模型

    Figure  7.  Finite element model

    图  8  混凝土和RPC三轴围压实验数据

    Figure  8.  Triaxial confining pressure experimental data of concrete and RPC

    图  9  拉伸和压缩应力应变曲线

    Figure  9.  Tensile and compressive stress-strain curves

    图  10  不同b3值对应的三轴拉伸应力应变曲线

    Figure  10.  Triaxial tension strain stress curvescorresponding to different b3 values

    图  11  状态方程

    Figure  11.  State equation

    图  12  第1次侵彻RPC靶体的模拟结果

    Figure  12.  Simulation results of the first penetration of the RPC target

    图  13  第2次侵彻RPC靶体的模拟结果

    Figure  13.  Simulation results of the second penetration of the RPC target

    图  14  第3次侵彻RPC靶体的模拟结果

    Figure  14.  Simulation results of the third penetration of the RPC target

    图  15  弹体与钢筋分布示意图(单位:mm)

    Figure  15.  Schematic diagram of the distribution of projectiles and reinforcement (unit: mm)

    图  16  有限元模型

    Figure  16.  Finite element model

    图  17  850 m/s弹速下的侵彻结果

    Figure  17.  Penetration results at the projectile velocity of 850 m/s

    图  18  1 150 m/s弹速下的贯穿结果

    Figure  18.  Penetration results at the projectile velocity of 1 150 m/s

    图  19  弹速与侵彻深度之间的关系

    Figure  19.  Relationship between projectile velocity and penetration depth

    表  1  RPC材料配合比

    Table  1.   Mixture proportions of RPC

    kg/m3
    材料胶凝材料减水剂钢纤维
    RPC1 23892817.7234.3159
    下载: 导出CSV

    表  2  RPC基本力学性能参数

    Table  2.   Basic mechanical performance parameters of RPC

    材料fc/MPaft/MPaE/GPaμρ/(g·cm−3
    RPC1209.2746.20.222.44
    下载: 导出CSV

    表  3  靶体多次侵彻实验结果

    Table  3.   Experimental results of targets subjected to multiple penetrations

    侵彻次数v0/(m·s−1h/mmS/cm2H/mmNWmax/mm
    1511.5129.1329.7 59.5 0 0
    2552.5257.4344.1 79.812 2
    3560.0290.3354.8114.91313
    下载: 导出CSV

    表  4  弹体、钢箍以及钢筋材料模型参数

    Table  4.   Model parameters of projectile, steel culvert and steel bar material

    材料ρ/(kg·m−3E/GPaμσy/MPa
    弹体7 8502100.31 650
    钢箍/钢筋7 8002100.3 300
    下载: 导出CSV

    表  5  损伤演化函数η(λ)

    Table  5.   Damage evolution function η(λ)

    λη λη
    00 4.0×10−60.51
    2.7×10−50.626.7×10−40.37
    6.8×10−50.921.2×10−30.27
    8.0×10−50.992.0×10−30.20
    1.0×10−41.005.5×10−30.10
    1.4×10−40.961.6×10−20
    2.6×10−40.66
    下载: 导出CSV

    表  6  活性粉末混凝土的K&C模型应变率效应特征点取值

    Table  6.   K&C model strain rate characteristic points of reactive powder concrete

    $\dot \varepsilon/{\rm{s}^{-1} }$$\psi $$\dot \varepsilon/{\rm{s}^{-1} }$$\psi $$\dot \varepsilon/{\rm{s}^{-1} }$$\psi $
    –30 0009.97–101.27–1×10–41.07
    –4 7829.97–31.24–1×10–51.03
    –1 0005.41–11.2201.00
    –3003.45–0.11.18301.00
    –1002.29–0.011.142652.94
    –251.28–1×10–31.1130 0002.94
    下载: 导出CSV

    表  7  RPC的K&C模型8号状态方程参数

    Table  7.   Parameters of No. 8 equation of state in the K&C model of RPC

    εV
    εV1εV2εV3εV4εV5εV6εV7εV8εV9εV10
    00.00150.00430.01010.03050.05130.07260.09430.1740.208
    σV/GPa
    σV1σV2σV3σV4σV5σV6σV7σV8σV9σV10
    00.0410.0940.2920.8811.6222.5113.5738.71411.579
    Kav/GPa
    Kav1Kav2Kav3Kav4Kav5Kav6Kav7Kav8Kav9Kav10
    27.527.527.88529.28834.84340.42545.98050.186112.915137.5
    下载: 导出CSV
  • [1] 任辉启, 穆朝明, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.

    REN H Q, MU C M, LIU R C, et al. Penetration effects of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016.
    [2] 王振宇, 冯进技, 张殿臣. 国外小型钻地核武器的发展及防护建议 [C] // 中国土木工程学会防护工程分会第五届理事会暨第九次学术会议. 长春: 中国土木工程学会, 2004: 66–69.

    WANG Z Y, FENG J J, ZHANG D C. Development of foreign small earth-penetrating nuclear weapons and relevant preventing measures [C] // The 5th Council and 9th Academic Conference of Protection Engineering Branch of China Society of Civil Engineering, Changchun: China Civil Engineering Society, 2004: 66–69.
    [3] DANCYGIER A N, YANKELEVSKY D Z, JAEGERMANN C. Response of high performance concrete plates to impact of non-deforming projectiles [J]. International Journal of Impact Engineering, 2007, 34(11): 1768–1779. DOI: 10.1016/j.ijimpeng.2006.09.094.
    [4] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
    [5] LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete [J]. International Journal of Impact Engineering, 2005, 31(7): 843–860. DOI: 10.1016/j.ijimpeng.2004.04.012.
    [6] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effect [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. DOI: 10.1016/0029-5493(76)90015-7.
    [7] RICHARD P, CHEYREZY M. Composition of reactive powder concretes [J]. Cement and Concrete Research, 1995, 25(7): 1501–1511. DOI: 10.1016/0008-8846(95)00144-2.
    [8] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真 [J]. 工程力学, 2018, 35(7): 167–186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.

    ZHANG W H, ZHANG Y S, CHEN Z Y. Penetration test and numerical simulation of ultral-high performance concrete with a scaled earth penetrator [J]. Engineering Mechanics, 2018, 35(7): 167–186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.
    [9] FARNAM Y, MOHAMMADI S, SHEKARCHI M. Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite [J]. International Journal of Impact Engineering, 2010, 37(2): 220–229. DOI: 10.1016/j.ijimpeng.2009.08.006.
    [10] 赖建中, 朱耀勇, 徐升, 等. 超高性能水泥基复合材料抗多次侵彻性能研究 [J]. 爆炸与冲击, 2013, 33(6): 601–607. DOI: 10.11883/1001-1455(2013)06-0601-07.

    LAI J Z, ZHU Y Y, XU S, et al. Resistance of ultra-high-performance cementitious composites to multiple impact penetration [J]. Explosion and Shock Waves, 2013, 33(6): 601–607. DOI: 10.11883/1001-1455(2013)06-0601-07.
    [11] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [12] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C] // The 14th International Symposium on Ballistics. Quebec City: National Defense Research Establishment, Sweden, 1993.
    [13] RIEDEL W, THOMA K, HIERMAIWE S, et al. Penetration of reinforced concrete by BETA-B-500, numerical analysis using a new macroscopic concrete model for hydrocodes [C] // The 9th International Symposion on the Interaction of the Effects of Munitions with Structures, Berlin Strausberg, 1999.
    [14] MURRAY Y D. Users manual for LS-DYNA Concrete Material Model 159: FHWA-HRT-05-062 [R]. 2007.
    [15] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9–10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [16] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [17] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [18] 崔亚男. 卵形头弹体撞击活性粉末混凝土失效特性实验研究[D]. 天津: 中国民航大学, 2019.

    CUI Y N. Experimental study on the failure characteristics of reactive powder concrete impacted by ogive-nose projectiles [D]. Tianjin: Civil Aviation University of China, 2019.
    [19] FENG J, GAO X D, LI J Z, et al. Influence of fiber mixture on impact response of ultra-high-performance hybrid fiber reinforced cementitious composite [J]. Composites Part B: Engineering, 2019, 163(1): 487–496. DOI: 10.1016/j.compositesb.2018.12.141.
    [20] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002.

    REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002.
    [21] REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227.
    [22] AFSHIN N, MOHAMMAD S, MASOUD M, et al. Behavior of steel fiber-reinforced cementitious mortar and high performance concrete in triaxial loading [J]. ACI Materials Journal, 2015, 112(1): 95–103. DOI: 10.14359/51686837.
    [23] YU Z R, ZHAO H Z, AN M J, et al. Mechanical properties of reactive powder concrete under triaxial compression [J]. Journal of the China Railway Society, 2017(7): 121–126. DOI: 10.3969/j.issn.1001-8360.2017.07.017.
    [24] FARNAM Y, MOOSAVI M, SHEKARCHI M, et al. Behaviour of slurry infiltrated fiber concrete (SIFCON) under triaxial compression [J]. Cement and Concrete Research, 2010, 40: 1571–1581. DOI: 10.1016/j.cemconres.2010.06.009.
    [25] SIRIJARONCHAI K, EL-TAWIL S, PARRA-MONTESINOS G. Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading [J]. Cement and Concrete Composites, 2010, 32: 62–72. DOI: 10.1016/j.cemconcomp.2009.09.003.
    [26] ZHANG K, ZHAO L Y, TAO N, et al. Experimental investigation and multiscale modeling of reactive powder cement pastes subject to triaxial compressive stresses [J]. Construction and Building Materials, 2019, 224: 242–254. DOI: 10.1016/j.conbuildmat.2019.07.049.
    [27] POLANCO-LORIA M. Improvements to the HJC concrete model in LS-DYNA: STF24 F01286 [R]. Trondheim, Norway, 2002.
    [28] 侯正纲, 三轴应力状态下混凝土强度研究[D]. 天津: 河北工业大学, 2006.

    HOU Z G. Research on concrete strength under triaxial stresses [D]. Tianjin: Hebei University of Technology, 2006.
    [29] 闫东明, 林皋, 徐平. 三向应力状态下混凝土动态强度和变形特性研究 [J]. 工程力学, 2007, 24(3): 58–64. DOI: 10.3969/j.issn.1000-4750.2007.03.010.

    YAN D M, LIN G, XU P. Dynamic strength and deformation of concrete in triaxial stress state [J]. Engineering Mechanics, 2007, 24(3): 58–64. DOI: 10.3969/j.issn.1000-4750.2007.03.010.
    [30] 熊益波, 胡永乐, 徐进, 等. 混凝土Johnson-Holmquist模型极限面参数确定 [J]. 兵工学报, 2010, 31(6): 746–751.

    XIONG Y B, HU Y L, XU J, et al. Determining failure surface parameters of the Johnson-Holmquist concrete constitutive model [J]. Acta Armamentarii, 2010, 31(6): 746–751.
    [31] 谢和平, 董毓利, 李世平. 不同围压下混凝土受压弹塑性损伤本构模型的研究 [J]. 煤炭学报, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.

    XIE H P, DONGY L, LI S P. Study of a constitutive model of elasto-plastic damage of concrete in axial compression test under different pressures [J]. Journal of China Coal Society, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.
    [32] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
    [33] WEERHIJM J, DOORMAAL J C A M V. Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34(3): 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005.
    [34] MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: 10.1061/(ASCE)0899-1561(2005)17:2(143).
    [35] MALVAR L J. Review of static and dynamic properties of steel reinforcing bars [J]. ACI Materials Journal, 1998, 95(5): 609–616. DOI: 10.1016/S0886-7798(98)00088-1.
    [36] MAO L, BARNETT S, BEGG D, et al. Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 64: 91–100. DOI: 10.1016/j.ijimpeng.2013.10.003.
    [37] MAO L, BARNETT S J. Investigation of toughness of ultra high performance fibre reinforced concrete (UHPFRC) beam under impact loading [J]. International Journal of Impact Engineering, 2017, 99: 26–38. DOI: 10.1016/j.ijimpeng.2016.09.014.
    [38] PARK J K, KIM S W, KIM D J. Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact [J]. Composites Structure, 2017, 162: 313–324. DOI: 10.1016/j.compstruct.2016.12.022.
    [39] LIN X S. Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect [J]. Construction and Building Materials, 2018, 176: 371–382. DOI: 10.1016/j.conbuildmat.2018.05.066.
    [40] MARSH S P. LASL shock Hugoniot data [M]. California: University of California Press, 1980.
    [41] 高乐. 活性粉末混凝土高压状态方程研究[D]. 广州: 广州大学, 2011.

    GAO L. Research on high pressure equation of RPC [D]. Guangzhou: Guangzhou University, 2011.
    [42] 严少华, 钱七虎, 周早生, 等. 高强混凝土及钢纤维高强混凝土高压状态方程的实验研究 [J]. 解放军理工大学学报(自然科学版), 2000, 1(6): 49–53. DOI: 10.3969/j.issn.1009-3443.2000.06.010.

    YAN S H, QIAN Q H, ZHOU Z S, et al. Experimental study of equation of state for high-strength concrete and high-strength fiber foncrete [J]. Journal of PLA University of Science and Technology, 2000, 1(6): 49–53. DOI: 10.3969/j.issn.1009-3443.2000.06.010.
  • 加载中
图(19) / 表(7)
计量
  • 文章访问数:  836
  • HTML全文浏览量:  481
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 修回日期:  2020-10-22
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回