输电线路爆破除冰动态特性

谢东升 孙滔 史卓鹏 智生龙 史淋升 李海涛

谢东升, 孙滔, 史卓鹏, 智生龙, 史淋升, 李海涛. 输电线路爆破除冰动态特性[J]. 爆炸与冲击, 2021, 41(6): 065102. doi: 10.11883/bzycj-2020-0170
引用本文: 谢东升, 孙滔, 史卓鹏, 智生龙, 史淋升, 李海涛. 输电线路爆破除冰动态特性[J]. 爆炸与冲击, 2021, 41(6): 065102. doi: 10.11883/bzycj-2020-0170
XIE Dongsheng, SUN Tao, SHI Zhuopeng, ZHI Shenglong, SHI Linsheng, LI haitao. Dynamic characteristics of electric transmission lines undergone blasting de-icing[J]. Explosion And Shock Waves, 2021, 41(6): 065102. doi: 10.11883/bzycj-2020-0170
Citation: XIE Dongsheng, SUN Tao, SHI Zhuopeng, ZHI Shenglong, SHI Linsheng, LI haitao. Dynamic characteristics of electric transmission lines undergone blasting de-icing[J]. Explosion And Shock Waves, 2021, 41(6): 065102. doi: 10.11883/bzycj-2020-0170

输电线路爆破除冰动态特性

doi: 10.11883/bzycj-2020-0170
基金项目: 国家自然科学基金(11902294);山西省应用研究基础计划(201801D221037);国网山西电力公司科技项目(520533170007)
详细信息
    作者简介:

    谢东升(1978- ),男,硕士,高级工程师,504125662@qq.com

    通讯作者:

    李海涛(1977- ),男,博士,副教授,lhtlx95@nuc.edu.cn

  • 中图分类号: O329; TM751

Dynamic characteristics of electric transmission lines undergone blasting de-icing

  • 摘要: 为研究输电线路爆破除冰效果及动态特性,进行了50 m孤立档输电线路爆破除冰模型实验,采用人工覆冰方式,通过引爆预设在输电线下侧的导爆索去除部分线路覆冰,测量了爆破除冰过程中三种输电线档中位移和端部动张力,并将爆破载荷简化为三角波载荷,利用有限元软件ABAQUS对实验工况进行了模拟验证;进一步利用模拟方法研究了爆破除冰量为20%时除冰位置对跳跃幅值和动张力的影响。结果表明:对于雨凇,爆破作用只会引起输电线爆破区域的覆冰脱落;爆破除冰时跳跃幅值和动张力幅值均大于相同位置自然脱冰,而随除冰位置的变化趋势与自然脱冰相似;与导线相比,地线光缆的跳跃幅值受爆破作用影响更显著。
  • 图  1  传感器及安装

    Figure  1.  Installation of sensors

    图  2  实验模型

    Figure  2.  Experimental model

    图  3  导爆索敷设

    Figure  3.  Setting of detonating cord

    图  4  架空线表面人工覆冰

    Figure  4.  Artificial icing on surface of overhead transmission line

    图  5  爆破后的线路覆冰情况

    Figure  5.  Icing situation of overhead transmission line after blasting

    图  6  不同时刻导线加速度随位置的变化

    Figure  6.  Acceleration curves of conductor with position at different times

    图  7  工况1档中位移和端部张力

    Figure  7.  Mid-point displacement and end tensions under condition 1

    图  8  工况2档中位移和端部张力

    Figure  8.  Mid-point displacement and end tensions under condition 2

    图  9  工况3档中位移和端部张力

    Figure  9.  Mid-point displacement and end tensions under condition 3

    图  10  不同脱冰位置输电线的跳跃幅值

    Figure  10.  Jumping amplitude of conductor at different de-icing positions

    图  11  不同脱冰位置输电线动张力峰值

    Figure  11.  Peak values of dynamic tension of transmission line at different de-icing positions

    表  1  输电线物理参数

    Table  1.   Physical parameters of transmission lines

    输电线直径/mm截面积/mm2线密度/(kg·m−1杨氏模量/GPa
    LGJ-240/3021.6275.960.9222 73
    GJ-50 9.0 49.480.4119185
    OPGW-24B1-50 9.6 48.250.345 162
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Conditions of experiment

    工况脱冰区域
    1导线1区域1、2、3同时爆破除冰
    2地线3区域4、5同时爆破除冰
    3光缆4区域6爆破除冰
    下载: 导出CSV

    表  3  覆冰前后输电线档中弧垂及等效覆冰厚度

    Table  3.   Sag of mid-point and equivalent thickness of transmission line before and after icing

    输电线档中弧垂/m等效覆冰厚度/mm
    覆冰前覆冰后
    导线1.141.1512.5
    地线0.860.9110.0
    光缆0.660.7210.0
    下载: 导出CSV
  • [1] 刘春城, 李宏男, 刘佼. 高压输电线路抗冰灾的研究现状与发展趋势 [J]. 自然灾害学报, 2012, 21(1): 155–162. DOI: 10.13577/j.jnd.2012.0123.

    LIU C C, LI H N, LIU J. Present status and trend of icing disaster resistance of high-voltage transmission lines [J]. Journal of Natural Disasters, 2012, 21(1): 155–162. DOI: 10.13577/j.jnd.2012.0123.
    [2] 黄新波, 刘家兵, 蔡伟, 等. 电力架空线路覆冰雪的国内外研究现状 [J]. 电网技术, 2008, 32(4): 23–28.

    HUANG X B, LIU J B, CAI W, et al. Present research situation of icing and snowing of overhead transmission lines in china and foreign countries [J]. Power System Technology, 2008, 32(4): 23–28.
    [3] 巢亚锋, 岳一石, 王成, 等. 输电线路融冰、除冰技术研究综述 [J]. 高压电器, 2016, 52(11): 1–9, 24. DOI: 10.13296/j.1001-1609.hva.2016.11.001.

    CHAO Y F, YUE Y S, WANG C, et al. De-icing techniques for ice-covered transmission lines: a review [J]. High Voltage Apparatus, 2016, 52(11): 1–9, 24. DOI: 10.13296/j.1001-1609.hva.2016.11.001.
    [4] 陈科全, 严波, 吕欣, 等. 四分裂导线机械式除冰装置及可行性研究 [J]. 振动与冲击, 2013, 32(20): 48–54. DOI: 10.13465/j.cnki.jvs.2013.20.036.

    CHEN K Q, YAN B, LYU X, et al. A mechanical de-icing device for iced quad-bundled conductors and its feasibility [J]. Journal of Vibration and Shock, 2013, 32(20): 48–54. DOI: 10.13465/j.cnki.jvs.2013.20.036.
    [5] PAUL S, CHANG J. Design of novel electromagnetic energy harvester to power a deicing robot and monitoring sensors for transmission lines [J]. Energy Conversion and Management, 2019, 197: 111868. DOI: 10.1016/j.enconman.2019.111868.
    [6] 刘智颖, 穆竺, 王加科, 等. 激光除冰光学系统的设计与参数分析 [J]. 光子学报, 2018, 47(8): 0822001. DOI: 10.3788/gzxb20184708.0822001.

    LIU Z Y, MU Z, WANG J K, et al. Design and parameter analysis of laser deicing optical system [J]. Acta Photonica Sinica, 2018, 47(8): 0822001. DOI: 10.3788/gzxb20184708.0822001.
    [7] WANG Y B, XU Y M, SU F. Damage accumulation model of ice detach behavior in ultrasonic de-icing technology [J]. Renewable Energy, 2020, 153: 1396–1405. DOI: 10.1016/j.renene.2020.02.069.
    [8] 宋巍, 谢东升, 黄铁铮, 等. 线性装药爆破去除输电线覆冰研究 [J]. 高压物理学报, 2019, 33(4): 045901. DOI: 10.11858/gywlxb.20180605.

    SONG W, XIE D S, HUANG T Z, et al. De-icing power line by linear shaped explosive blast [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045901. DOI: 10.11858/gywlxb.20180605.
    [9] 谢东升, 宋巍, 王玮, 等. 高压输电线路覆冰清除爆破参数研究 [J]. 中北大学学报(自然科学版), 2018, 39(6): 746–751. DOI: 10.3969/j.issn.1673-3193.2018.06.018.

    XIE D S, SONG W, WANG W, et al. Study on blasting parameters of high voltage transmission line coated by ice [J]. Journal of North University of China (Natural Science Edition), 2018, 39(6): 746–751. DOI: 10.3969/j.issn.1673-3193.2018.06.018.
    [10] 王璋奇, 齐立忠, 王剑, 等. 架空输电线非同期脱冰跳跃动张力实验研究 [J]. 振动与冲击, 2016, 35(22): 61–65. DOI: 10.13465/j.cnki.jvs.2016.22.010.

    WANG Z Q, QI L Z, WANG J, et al. Experiments on the dynamic tension of an overhead conductor under the asynchronous ice shedding [J]. Journal of Vibration and Shock, 2016, 35(22): 61–65. DOI: 10.13465/j.cnki.jvs.2016.22.010.
    [11] 李宏男, 吴育炎. 输电线路覆冰脱落动力效应试验研究 [J]. 土木工程学报, 2019, 52(5): 35–46, 100. DOI: 10.15951/j.tmgcxb.2019.05.004.

    LI H N, WU Y Y. Experimental study on dynamic responses of transmission lines caused by ice shedding [J]. China Civil Engineering Journal, 2019, 52(5): 35–46, 100. DOI: 10.15951/j.tmgcxb.2019.05.004.
    [12] 谢献忠, 李丹, 黄伟, 等. 塔线体系脱冰跳跃动力特性实验研究 [J]. 应用力学学报, 2017, 34(5): 855–861. DOI: 10.11776/cjam.34.05.B071.

    XIE X Z, LI D, HUANG W, et al. Experimental study on dynamical properties of tower-line systems induced by ice-shedding [J]. Chinese Journal of Applied Mechanics, 2017, 34(5): 855–861. DOI: 10.11776/cjam.34.05.B071.
    [13] YAN B, CHEN K Q, GUO Y M, et al. Numerical simulation study on jump height of iced transmission lines after ice shedding [J]. IEEETransactions on Power Delivery, 2013, 28(1): 216–225. DOI: 10.1109/TPWRD.2012.2219324.
    [14] 张欢, 李炜, 张亚军, 等. 输电线路档距组合对覆冰导线动态特性的影响分析 [J]. 高电压技术, 2013, 39(3): 755–761. DOI: 10.3969/j.issn.1003-6520.2013.03.036.

    ZHANG H, LI W, ZHANG Y J, et al. Impact analysis of transmission line span combination on dynamic characteristics of iced conductor [J]. High Voltage Engineering, 2013, 39(3): 755–761. DOI: 10.3969/j.issn.1003-6520.2013.03.036.
    [15] 杨风利, 杨靖波, 李正, 等. 覆冰输电线路脱冰跳跃及抑制方法研究 [J]. 振动与冲击, 2010, 29(5): 20–25, 30. DOI: 10.3969/j.issn.1000-3835.2010.05.005.

    YANG F L, YANG J B, LI Z, et al. Ice shedding and vibration suppression of a transmission line system [J]. Journal of Vibration and Shock, 2010, 29(5): 20–25, 30. DOI: 10.3969/j.issn.1000-3835.2010.05.005.
    [16] 钟巍, 寿列枫, 何增, 等. 钢化玻璃冲击波毁伤效应测试结果分析 [J]. 爆炸与冲击, 2018, 38(5): 1071–1082. DOI: 10.11883/bzycj-2017-0070.

    ZHONG W, SHOU L F, HE Z, et al. On experimental blast parameters for damage effect of monolithic tempered glass subjected to blast loading [J]. Explosion and Shock Waves, 2018, 38(5): 1071–1082. DOI: 10.11883/bzycj-2017-0070.
    [17] JI K P, RUI X M, LI L, et al. A novel ice-shedding model for overhead power line conductors with the consideration of adhesive/cohesive forces [J]. Computers and Structures, 2015, 157: 153–164. DOI: 10.1016/j.compstruc.2015.05.014.
    [18] FORTIN G, PERRON J. Ice adhesion models to predict shear stress at shedding [J]. Journal of Adhesion Science and Technology, 2012, 26(4−5): 523–553. DOI: 10.1163/016942411X574835.
    [19] 李黎, 夏正春, 付国祥, 等. 大跨越输电塔-线在线路脱冰作用下的振动 [J]. 振动与冲击, 2008, 27(9): 32–34, 50. DOI: 10.13465/j.cnki.jvs.2008.09.038.

    LI L, XIA Z C, FU G X, et al. Ice-shedding induced vibration of a long-span electric transmission tower-line system [J]. Journal of Vibration and Shock, 2008, 27(9): 32–34, 50. DOI: 10.13465/j.cnki.jvs.2008.09.038.
    [20] 王璋奇, 王剑, 齐立忠. 同期脱冰架空输电导线的动张力特性实验研究 [J]. 噪声与振动控制, 2016, 36(1): 157–162. DOI: 10.3969/j.issn.1006-1335.2016.01.034.

    WANG Z Q, WANG J, QI L Z. Experimental study on the dynamic tension characteristics ofthe overhead transmission conductor undersynchronous ice shedding [J]. Noise and Vibration Control, 2016, 36(1): 157–162. DOI: 10.3969/j.issn.1006-1335.2016.01.034.
    [21] 陈勇, 胡伟, 王黎明, 等. 覆冰导线脱冰跳跃特性研究 [J]. 中国电机工程学报, 2009, 29(28): 115–121. DOI: 10.3321/j.issn:0258-8013.2009.28.019.

    CHEN Y, HU W, WANG L M, et al. Research on ice-shedding characteristic of icing conductor [J]. Proceedings of the CSEE, 2009, 29(28): 115–121. DOI: 10.3321/j.issn:0258-8013.2009.28.019.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  263
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 修回日期:  2020-08-18
  • 网络出版日期:  2021-06-10
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回