密闭空间内爆炸载荷抑制效应实验研究

孔祥韶 王子棠 况正 周沪 郑成 吴卫国

孔祥韶, 王子棠, 况正, 周沪, 郑成, 吴卫国. 密闭空间内爆炸载荷抑制效应实验研究[J]. 爆炸与冲击, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193
引用本文: 孔祥韶, 王子棠, 况正, 周沪, 郑成, 吴卫国. 密闭空间内爆炸载荷抑制效应实验研究[J]. 爆炸与冲击, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193
KONG Xiangshao, WANG Zitang, KUANG Zheng, ZHOU Hu, ZHENG Cheng, WU Weiguo. Experimental study on the mitigation effects of confined-blast loading[J]. Explosion And Shock Waves, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193
Citation: KONG Xiangshao, WANG Zitang, KUANG Zheng, ZHOU Hu, ZHENG Cheng, WU Weiguo. Experimental study on the mitigation effects of confined-blast loading[J]. Explosion And Shock Waves, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193

密闭空间内爆炸载荷抑制效应实验研究

doi: 10.11883/bzycj-2020-0193
基金项目: 装备预先研究教育部联合基金青年人才项目(6141A02033108)
详细信息
    作者简介:

    孔祥韶(1983- ),男,教授,博士生导师,kongxs@whut.edu.cn

    通讯作者:

    郑 成(1991- ),男,讲师,zhengchengyeep@whut.edu.cn

  • 中图分类号: O381

Experimental study on the mitigation effects of confined-blast loading

  • 摘要: 炸药在密闭空间内爆炸时的爆炸载荷与在敞开环境中有很大差异,在密闭空间内,TNT炸药的爆炸产物能够与周围空气充分混合并发生燃烧反应进而释放额外的能量,使密闭空间内的反射冲击波及准静态压力均明显增加。为探究不同气体环境对密闭空间内爆炸载荷的抑制效应,开展了3种不同药量的TNT分别在空气、水雾和氮气环境密闭空间内的爆炸实验研究,通过理论计算和实验对比分析了密闭空间内的爆炸载荷压力、温度及受载钢板试件响应特性。结果表明,水雾和氮气均能有效降低空间内的准静态压力和温度,对准静态压力的平均降幅分别为36.0%和51.7%,对温度的平均降幅分别为42.6%和40.3%;在水雾和氮气环境中的爆炸载荷作用下,钢板试件动态响应较空气环境中显著降低,其中160 g药量下,水雾和氮气环境中钢板试件的最终变形分别减少了15.9%和23.5%,氮气的减弱效果优于水雾;水雾和氮气均能及时有效地抑制封闭空间内的爆炸载荷,降低结构的损伤程度。
  • 图  1  爆炸实验装置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  水雾孔分布位置图(爆炸箱俯视图)

    Figure  2.  Schematic of distribution of nozzles of the chamber (top view of chamber)

    图  3  不同粒径水雾的体积分数

    Figure  3.  Volume fraction of the water mist with different diameter

    图  4  氧气浓度仪及出气阀布置

    Figure  4.  Distribution of oxygen concentrator and outlet valve

    图  5  压力和温度传感器布置图

    Figure  5.  Arrangement of temperature and pressure sensors

    图  6  DIC测试系统布置示意图

    Figure  6.  Schematic of DIC system arrangement

    图  7  80 g TNT水雾和空气环境工况下P1测点压力历程

    Figure  7.  Pressure-time curves of measuring point P1 from 80 g TNT explosion in chamber filled with water mist and air

    图  8  120 g TNT水雾和空气环境工况下P1测点压力历程

    Figure  8.  Pressure-time curves of measuring point P1 from120 g TNT explosion in chamber filled with water mist and air

    图  9  160 g TNT水雾和空气环境工况下P1测点压力历程

    Figure  9.  Pressure-time curves of measuring point P1 from160 g TNT explosion in chamber filled with water mist and air

    图  10  80 g TNT在氮气和空气环境工况下测点P1处的压力时程曲线

    Figure  10.  Pressure-time curves of measuring point P1 from80 g TNT explosion in chamber filled with nitrogen and air

    图  11  120 g TNT氮气和空气环境工况下P1测点压力历程

    Figure  11.  Pressure-time curves of measuring point P1 from120 g TNT explosion in chamber filled with nitrogen and air

    图  12  160 g TNT氮气和空气环境工况下P1测点压力历程

    Figure  12.  Pressure-time curves of measuring point P1 from160 g TNT explosion in chamber filled with nitrogen and air

    图  13  氮气工况下准静态压力计算值与实验值对比

    Figure  13.  Comparison between calculated results and experiment results of quasi-static pressure in nitrogen environment

    图  14  80 g TNT在3种环境工况下测点T1处的温度曲线

    Figure  14.  Temperature-time curves of measuring point T1 in the conditions of 80 g TNT with air, water mist and nitrogen

    图  15  120 g TNT在3种环境工况下测点T1处的温度曲线

    Figure  15.  Temperature-time curves of measuring point T1 in the conditions of 120 g TNT with air, water mist and nitrogen

    图  16  160 g TNT在3种环境工况下测点T1处的温度曲线

    Figure  16.  Temperature-time curves of measuring point T1 in the conditions of 160 g TNT with air, water mist and nitrogen

    图  17  空气和水雾环境中3种药量工况下试件板中心点变形历程对比

    Figure  17.  Comparison of the mid-point deflection of plates at different charge masses in water mist and air conditions

    图  18  160 g药量下3种不同气体环境中试件板中心点的变形历程

    Figure  18.  Mid-point deflection of plates at 160 g TNT in three different environments

    表  1  试件材料力学性能

    Table  1.   Mechanical properties of the steel plates

    杨氏模量/GPa硬化模量/GPa泊松比屈服强度/MPa密度/(kg·m−3)
    2061.060.283247850
    下载: 导出CSV

    表  2  水雾粒径及累积体积分数

    Table  2.   Water-mist diameter and cumulative volume fraction

    粒径/μm510204575100200300
    体积分数/%0.000.032.0919.2855.5379.0099.77100.00
    下载: 导出CSV

    表  3  工况设置

    Table  3.   Load conditions of experimental test

    工况试件板厚度/mmTNT质量/g舱内环境
    14.0 80空气
    24.0120空气
    34.0160空气
    44.0 80水雾
    54.0120水雾
    64.0160水雾
    7 80氮气
    83.0120氮气
    94.0160氮气
    下载: 导出CSV

    表  4  圆柱形TNT炸药的尺寸

    Table  4.   Detailed size of cylindrical TNT charges

    TNT质量/g高度/mm直径/mm
    8040.540.6
    12038.950.3
    16051.550.4
    下载: 导出CSV

    表  5  水雾和空气环境内爆载荷及等效能量

    Table  5.   Confined-blast loading and equivalent energy in chamberfilled with water mist and air

    TNT质量/
    g
    舱内
    环境
    首冲击波
    峰值/kPa
    准静态压力
    峰值/kPa
    准静态压力
    降低率/%
    等效能量/
    (kJ·kg−1)
    80空气 546.7262.831.19461.0
    水雾 336.2181.16520.8
    120空气 722.6358.334.78600.1
    水雾 669.4233.85612.3
    160空气1033.1490.642.18831.3
    水雾 693.9284.15113.2
    下载: 导出CSV

    表  6  氮气和空气环境中的内爆载荷及等效能量

    Table  6.   Confined-blast loading and equivalent energy in chamber filled with nitrogen and air

    TNT质量/g舱内环境首冲击波峰值/kPa准静态压力峰值/kPa准静态压力降低率/%等效能量/(kJ·kg−1)
    80空气 546.7262.853.89461.0
    氮气 554.7121.54375.6
    120空气 722.6358.348.98600.1
    氮气 728.6183.04392.2
    160空气1033.1490.652.38831.3
    氮气 908.8234.24215.8
    下载: 导出CSV

    表  7  氮气工况下箱内气体属性

    Table  7.   Parameters of gasin chamber filled with nitrogen

    气体比定容热容/(kJ·kg−1·K−1)(25 ℃)密度/(kg·m−3)(25 ℃)
    水蒸气(H2O)1.400
    一氧化碳(CO)0.7431.250
    氮气(N20.7411.250
    氧气(O20.6571.429
    二氧化碳(CO20.6381.977
    下载: 导出CSV

    表  8  氮气工况下各药量下准静态压力计算值

    Table  8.   Calculated results of quasi-static pressure in nitrogen environment

    TNT质量/gmg/gcV/(kJ·kg−1·K−1pqs/kPa
    801530.40.739123.5
    1201570.40.741185.6
    1601610.40.747239.1
    下载: 导出CSV

    表  9  水雾和空气环境工况不同测点位置的温度峰值平均值

    Table  9.   Average value of temperature peaks at different measuring points in water mist and air conditions

    TNT质量/g空气工况水雾工况
    T1、T3、T5点温度平均值/℃T2、T4点温度平均值/℃T1、T3、T5点温度平均值/℃T2、T4点温度平均值/℃
    80479.5399.3338.3191.2
    120586.0488.9404.4254.3
    160748.5817.5460.1355.3
    下载: 导出CSV

    表  10  水雾工况相较于空气工况的温度峰值下降比例

    Table  10.   Proportion of peak temperature drop in water mist condition relative to air conditions

    TNT质量/gT1、T3、T5点温度平均值降低比例/%T2、T4点温度平均值降低比例/%整体温度峰值平均值降低比例/%
    8029.552.140.8
    12031.048.039.5
    16038.556.547.5
    下载: 导出CSV

    表  11  氮气和空气环境工况下不同测点位置的温度峰值平均值

    Table  11.   Average value of temperature peaks at different measuring points in water mist and air conditions

    TNT质量/g空气工况氮气工况
    T1、T3、T5点温度平均值/℃T2、T4点温度平均值/℃T1、T3、T5点温度平均值/℃T2、T4点温度平均值/℃
    80479.5399.3180.9124.6
    120586.0488.9480.5422.8
    160748.5817.5557.6475.5
    下载: 导出CSV

    表  12  氮气工况相较于空气工况下温度峰值下降比例

    Table  12.   Proportion of peak temperature drop in nitrogen condition relative to air conditions

    TNT质量/gT1、T3、T5点温度平均值降低比例/%T2、T4点温度平均值降低比例/%整体温度峰值平均值降低比例/%
    8062.368.865.5
    12018.025.621.8
    16025.541.833.7
    下载: 导出CSV

    表  13  空气和水雾环境工况下内爆载荷的等效冲量

    Table  13.   Equivalent impulse of confined-blast loading at different charge masses in water mist and air conditions

    TNT质量/g舱内环境δ/hIeq/(N·s)饱和响应时间/mspa/kPa
    80空气 8.5 723.92.4477.3
    水雾 7.0 598.32.5373.9
    氮气
    120空气11.0 934.12.2654.5
    水雾 9.3 793.62.3539.2
    氮气14.7 704.42.5440.3
    160空气13.21124.62.6689.1
    水雾11.1 946.42.4616.2
    氮气10.1 854.82.4556.5
    下载: 导出CSV
  • [1] 胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展 [J]. 含能材料, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.

    HU H W, SONG P, ZHAO S X, et al. Progressinexplosioninconfinedspace [J]. ChineseJournalofEnergeticMaterials, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.
    [2] WU C Q, LUKASZEWICZ M, SCHEBELLA K, et al. Experimental and numerical investigation of confined explosion in a blast chamber [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 737–750. DOI: 10.1016/j.jlp.2013.02.001.
    [3] ZHENG C, KONG X S, WU W G, et al. The elastic-plastic dynamic response of stiffened plates under confined blast load [J]. International Journal of Impact Engineering, 2016, 95: 141–153. DOI: 10.1016/j.ijimpeng.2016.05.008.
    [4] CAÇOILO A, TEIXEIRA-DIAS F, MOURÃO R, et al. Blast wave propagation in survival shelters: experimental analysis and numerical modelling [J]. Shock Waves, 2018, 28(6): 1169–1183. DOI: 10.1007/s00193-018-0858-5.
    [5] DONAHUE L, ZHANG F, RIPLEY R C. Numerical models for afterburning of TNT detonation products in air [J]. Shock Waves, 2013, 23(6): 559–573. DOI: 10.1007/s00193-013-0467-2.
    [6] KONG X S, ZHOU H, ZHENG C, et al. An experimental study on the mitigation effects of fine water mist on confined-blast loading and dynamic response of steel plates [J]. International Journal of Impact Engineering, 2019, 134: 103370. DOI: 10.1016/j.ijimpeng.2019.103370.
    [7] ANANTH R, WILLAUER H D, FARLEY J P, et al. Effects of fine water mist on a confined blast [J]. Fire Technology, 2012, 48(3): 641–675. DOI: 10.1007/s10694-010-0156-y.
    [8] WILLAUER H D, ANANTH R, FARLEY J P, et al. Mitigation of TNT and Destex explosion effects using water mist [J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1068–1073. DOI: 10.1016/j.jhazmat.2008.10.130.
    [9] MATARADZE E, CHIKHRADZE N, BOCHORISHVILI N, et al. Experimental study of the effect of water mist location on blast overpressure attenuation in a shock tube [J]. IOP Conference Series: Earth and Environmental Science, 2017, 95(4): 042031. DOI: 10.1088/1755-1315/95/4/042031.
    [10] SCHWER D A, KAILASANATH K. Numerical simulations of the mitigation of unconfined explosions using water-mist [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2361–2369. DOI: 10.1016/j.proci.2006.07.145.
    [11] ADIGA K C, WILLAUER H D, ANANTH R, et al. Implications of droplet breakup and formation of ultra fine mist in blast mitigation [J]. Fire Safety Journal, 2009, 44(3): 363–369. DOI: 10.1016/j.firesaf.2008.08.003.
    [12] JONES A, NOLAN P F. Discussions on the use of fine water sprays or mists for fire suppression [J]. Journal of Loss Prevention in the Process Industries, 1995, 8(1): 17–22. DOI: 10.1016/0950-4230(95)90057-V.
    [13] 胡翔. 细水雾对冲击波的削弱作用研究[D]. 武汉: 武汉理工大学, 2018.

    HU X. Research on the mitigation of shock wave using fine water mist [D]. Wuhan: Wuhan University of Technology, 2018.
    [14] 陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究 [J]. 兵工学报, 2018, 39(5): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.

    CHEN P Y, HOU H L, LIU G B, et al. Experimental investigation on mitigatingeffect of water mist on theexplosive shock wave inside cabin [J]. Acta Armamentarii, 2018, 39(5): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.
    [15] 孔祥韶, 况正, 郑成, 等. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究 [J]. 兵工学报, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.

    KONG X S, KUANG Z, ZHENG C, et al. Experimental study of after burning enhancement effect for blast load in confined compartment space [J]. ActaArmamentarii, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.
    [16] 金朋刚, 郭炜, 任松涛, 等. TNT密闭环境中能量释放特性研究 [J]. 爆破器材, 2014, 43(2): 10–14. DOI: 10.3969/j.issn.1001-8352.2014.02.003.

    JIN P G, GUO W, REN S T, et al. ResearchonTNTenergyrelease characteristicsinenclosedcondition [J]. ExplosiveMaterials, 2014, 43(2): 10–14. DOI: 10.3969/j.issn.1001-8352.2014.02.003.
    [17] 金朋刚, 郭炜, 王建灵, 等. 密闭条件下TNT的爆炸压力特性 [J]. 火炸药学报, 2013, 36(3): 39–41. DOI: 10.3969/j.issn.1007-7812.2013.03.009.

    JIN P G, GUO W, WANG J L, et al. Explosion pressure characteristics of TNT under closed condition [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 39–41. DOI: 10.3969/j.issn.1007-7812.2013.03.009.
    [18] 张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.

    ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.
    [19] 李芝绒, 王胜强, 蒋海燕, 等. 圆筒装置内爆炸压力载荷特性实验研究 [J]. 爆炸与冲击, 2019, 39(10): 102202. DOI: 10.11883/bzycj-2018-0327.

    LI Z R, WANG S Q, JIANG H Y, et al. Experimental studies on characteristics of explosion pressure load in cylinder apparatus [J]. Explosion and Shock Waves, 2019, 39(10): 102202. DOI: 10.11883/bzycj-2018-0327.
    [20] FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
    [21] 王等旺, 张德志, 李焰, 等. 爆炸容器内准静态气压实验研究 [J]. 兵工学报, 2012, 33(12): 1493–1497.

    WANG D W, ZHANG D Z, LI Y, et al. Experiment investigation on quasi-static pressure in explosion containment vessels [J]. Acta Armamentarii, 2012, 33(12): 1493–1497.
    [22] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading—a review part II: Experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8.
    [23] YUEN S C K, NURICK G N, LANGDON G S, et al. Deformation of thin plates subjected to impulsive load: part III–an update 25 years on [J]. International Journal of Impact Engineering, 2017, 107: 108–117. DOI: 10.1016/j.ijimpeng.2016.06.010.
    [24] 孔祥韶, 周沪, 郑成, 等. 基于饱和响应时间的封闭空间内爆炸载荷等效方法研究 [J]. 爆炸与冲击, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.

    KONG X S, ZHOU H, ZHENG C, et al. An equivalent calculation method for confined-blast load based on saturated response time [J]. Explosion and Shock Waves, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.
  • 加载中
图(18) / 表(13)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  304
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 修回日期:  2020-08-31
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回