基于五阶WENO格式的燃气在药床中流动过程二维两相流研究

程申申 王浩 薛绍 陶如意

程申申, 王浩, 薛绍, 陶如意. 基于五阶WENO格式的燃气在药床中流动过程二维两相流研究[J]. 爆炸与冲击, 2021, 41(6): 062902. doi: 10.11883/bzycj-2020-0200
引用本文: 程申申, 王浩, 薛绍, 陶如意. 基于五阶WENO格式的燃气在药床中流动过程二维两相流研究[J]. 爆炸与冲击, 2021, 41(6): 062902. doi: 10.11883/bzycj-2020-0200
CHENG Shenshen, WANG Hao, XUE Shao, TAO Ruyi. Two-dimensional numerical simulation on gas-solid two-phase flow induced by combustion gas flow in a chamber based on a fifth-order WENO scheme[J]. Explosion And Shock Waves, 2021, 41(6): 062902. doi: 10.11883/bzycj-2020-0200
Citation: CHENG Shenshen, WANG Hao, XUE Shao, TAO Ruyi. Two-dimensional numerical simulation on gas-solid two-phase flow induced by combustion gas flow in a chamber based on a fifth-order WENO scheme[J]. Explosion And Shock Waves, 2021, 41(6): 062902. doi: 10.11883/bzycj-2020-0200

基于五阶WENO格式的燃气在药床中流动过程二维两相流研究

doi: 10.11883/bzycj-2020-0200
详细信息
    作者简介:

    程申申(1994- ),男,博士研究生,1447202650@qq.com

    通讯作者:

    陶如意(1978- ),女,博士,副研究员,硕士生导师,tao801801@163.com

  • 中图分类号: O359

Two-dimensional numerical simulation on gas-solid two-phase flow induced by combustion gas flow in a chamber based on a fifth-order WENO scheme

  • 摘要: 为研究内弹道初始阶段中心点火管燃气在膛内药床中的流动特性和传播规律,设计了可视化点传火实验平台,并进行了膛内假药床的点传火实验。基于加权本质无震荡(weighted essentially non-oscillatory, WENO)格式,构造了膛内轴对称二维内弹道两相流模型,对膛内燃气在假药床中的流动过程进行数值模拟。计算结果与可视化实验结果符合较好,全局压力平均误差为5.35%。表明数值计算准确地描述了燃气流动特性,完整地呈现了点火管燃气在假药床中的发展过程。在点火初始阶段,膛内压力径向效应明显,气相沿径向传播较快,药床药粒基本不会发生运动;随着燃气逐渐在膛内传播,膛内压力呈现径向一致、轴向梯度分布的特征,在压力梯度作用下,气相轴向速度开始占据主导,径向速度在膛底和中部区域减小为零,而固相速度随气相速度变化而变化;气相在到达弹底前,由于固相颗粒的壅塞,会提前出现速度反向波动现象。
  • 图  1  装药结构示意图

    Figure  1.  Schematic of the charge structure

    图  2  可视化实验装置

    Figure  2.  Visual experimental system

    图  3  计算压力曲线与实验对比图

    Figure  3.  Comparison of pressure-time curves between numerical simulation and experiment

    图  4  数值模拟压力云图与高速摄影图像的对比

    Figure  4.  Comparison between pressure clouds by numerical simulation and images by high-speed photography

    图  5  r=20 mm处沿轴向方向的压力分布

    Figure  5.  Pressure distributions along the axis at r=20 mm

    图  6  0.5~1.0 ms不同时刻r=20 mm处沿轴向方向的气相速度分布

    Figure  6.  Gas phase velocity distributions along the axis at r=20 mm and different times from 0.5 ms to 1.0 ms

    图  7  1.5~3.2 ms不同时刻r=20 mm处气相速度沿轴向的分布

    Figure  7.  Gas phase velocity distributions along the axis at r=20 mm and different times from 1.5 ms to 3.2 ms

    图  8  0.5~1.2 ms不同时刻r=20 mm处固相速度沿轴向的分布

    Figure  8.  Solid phase velocity distributions along the axis at r=20 mm and different times from 0.5 ms to 1.2 ms

    图  9  2.5~3.2 ms不同时刻r=20 mm处固相速度沿轴向的分布

    Figure  9.  Solid phase velocity distributions along the axis at r=20 mm and different times from 2.5 ms to 3.2 ms

  • [1] 翁春生, 王浩. 计算内弹道学[M]. 北京: 国防工业出版社, 2006: 113−123.
    [2] 袁亚雄, 张小兵. 高温高压多相流体动力学基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005: 140−203.
    [3] 王升晨, 周彦煌, 刘千里, 等. 膛内多相燃烧理论及应用[M]. 北京: 兵器工业出版社, 1994: 160−197.
    [4] 王浩, 梁世超, 张莺, 等. 火焰在传火管装药床中的传输特性研究 [J]. 爆炸与冲击, 1999, 19(1): 66–71.

    WANG H, LIANG S C, ZHANG Y, et al. Study of flame propagation characteristics in fire transfering tube [J]. Explosion and Shock Waves, 1999, 19(1): 66–71.
    [5] 王珊珊, 张玉成, 王浩, 等. 大长径比点火管高密实火药床点传火过程两相流的数值模拟 [J]. 爆炸与冲击, 2013, 33(4): 444–448. DOI: 10.11883/1001-1455(2013)04-0444-05.

    WANG S S, ZHANG Y C, WANG H, et al. Two-phase flow in ignition process of consolidated charge bed within a large length-to-diameter ratio igniter tube [J]. Explosion and Shock Waves, 2013, 33(4): 444–448. DOI: 10.11883/1001-1455(2013)04-0444-05.
    [6] 王珊珊, 王浩, 黄明, 等. 药床透气性对大长径比点传火管点传火性能的影响研究 [J]. 弹道学报, 2013, 25(4): 95–99. DOI: 10.3969/j.issn.1004-499X.2013.04.019.

    WANG S S, WANG H, HUANG M, et al. Research on influence of charge permeability on ignition characteristics on large length-diameter ratio igniter tube [J]. Journal of Ballistics, 2013, 25(4): 95–99. DOI: 10.3969/j.issn.1004-499X.2013.04.019.
    [7] 郭梦婷, 陶如意, 李子杰. 大长径比中心炸管式抛撒定容阶段两相流模拟 [J]. 弹道学报, 2017, 29(1): 68–72; 92. DOI: 10.3969/j.issn.1004-499X.2017.01.012.

    GUO M T, TAO R Y, LI Z J. Simulation of two-phase flow in the constant volume of dispersal system using centralizing blast-tube with large length-diameter ratio [J]. Journal of Ballistics, 2017, 29(1): 68–72; 92. DOI: 10.3969/j.issn.1004-499X.2017.01.012.
    [8] MIURA H, MATSUO A, NAKAMURA Y. Three-dimensional simulation of pressure fluctuation in a granular solid propellant chamber within an ignition stage [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 259–267. DOI: 10.1002/prep.201000058.
    [9] JARAMAZ S, MICKOVIĆ D, ELEK P. Two-phase flows in gun barrel: theoretical and experimental studies [J]. International Journal of Multiphase Flow, 2011, 37(5): 475–487. DOI: 10.1016/j.ijmultiphaseflow.2011.01.003.
    [10] 程诚, 张小兵. 某制导炮弹二维两相流内弹道性能分析与数值模拟研究 [J]. 兵工学报, 2015, 36(1): 58–63. DOI: 10.3969/j.issn.1000-1093.2015.01.009.

    CHENG C, ZHANG X B. Two-dimensional numerical simulation on two-phase flow interior ballistic performance of a guided projectile [J]. Acta Armamentarii, 2015, 36(1): 58–63. DOI: 10.3969/j.issn.1000-1093.2015.01.009.
    [11] 程诚, 张小兵. 高阶近似黎曼解模型在火炮内弹道两相流中的应用研究 [J]. 兵工学报, 2010, 32(10): 1200–1205.

    CHENG C, ZHANG X B. Research and application of higher-order approximate Riemann solver to two-phase flow in gun [J]. Acta Armamentarii, 2010, 32(10): 1200–1205.
    [12] 张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010: 431 439.
    [13] 李新亮. 高超声速湍流直接数值模拟技术 [J]. 航空学报, 2015, 36(1): 147–158. DOI: 10.7527/S1000-6893.2014.0233.

    LI X L. Direct numerical simulation techniques for hypersonic turbulent flows [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 147–158. DOI: 10.7527/S1000-6893.2014.0233.
    [14] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
  • 加载中
图(9)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  325
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 修回日期:  2020-10-09
  • 网络出版日期:  2021-05-31
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回