岩石爆破破碎能耗随抵抗线的变化规律

雷振 张智宇 黄永辉 周继国 白莹

雷振, 张智宇, 黄永辉, 周继国, 白莹. 岩石爆破破碎能耗随抵抗线的变化规律[J]. 爆炸与冲击, 2021, 41(7): 075201. doi: 10.11883/bzycj-2020-0214
引用本文: 雷振, 张智宇, 黄永辉, 周继国, 白莹. 岩石爆破破碎能耗随抵抗线的变化规律[J]. 爆炸与冲击, 2021, 41(7): 075201. doi: 10.11883/bzycj-2020-0214
LEI Zhen, ZHANG Zhiyu, HUANG Yonghui, ZHOU Jiguo, BAI Ying. An investigation of energy consumption variation in rock blasting breaking with the resistance line[J]. Explosion And Shock Waves, 2021, 41(7): 075201. doi: 10.11883/bzycj-2020-0214
Citation: LEI Zhen, ZHANG Zhiyu, HUANG Yonghui, ZHOU Jiguo, BAI Ying. An investigation of energy consumption variation in rock blasting breaking with the resistance line[J]. Explosion And Shock Waves, 2021, 41(7): 075201. doi: 10.11883/bzycj-2020-0214

岩石爆破破碎能耗随抵抗线的变化规律

doi: 10.11883/bzycj-2020-0214
基金项目: 国家自然科学基金(52064025,51664007)
详细信息
    作者简介:

    雷 振(1975- ),男,博士,研究员,52337741@qq.com

    通讯作者:

    黄永辉(1981- ),男,博士,讲师,8176309@qq.com

  • 中图分类号: O389

An investigation of energy consumption variation in rock blasting breaking with the resistance line

  • 摘要: 针对爆炸荷载下岩体破碎块度和有用功能耗及能耗利用率问题,运用断裂力学、分形基础理论分析和模型实验等方法,对爆炸荷载下岩体破碎块度和能耗利用率随最小抵抗线的变化规律开展了系统的分析研究。研究结果表明:在模型实验条件下,破碎块度分形维数在1.2~1.7之间,随最小抵抗线增大呈现较好的线性衰减趋势;破碎能耗随最小抵抗线呈现先增加后降低的趋势,爆炸能量利用率在4.57%~12.51%之间,趋势与能耗值一致,模型实验中能耗利用率存在最大值;破碎块度与能耗利用率变化趋势相反,说明在最小抵抗线变化过程中存在一个最佳值,使得破碎块度和能耗利用率均处于最优状态,模型实验中这一最佳值为160 mm,是装药直径的26.7倍。该研究结果可为提高爆炸能利用率理论分析及工程中降低大块率的设计和施工提供理论依据。
  • 图  1  实验模型

    Figure  1.  Experimental model

    图  2  标准试件物理力学参数测试

    Figure  2.  Measurements of physical and mechanical properties of standard samples

    图  3  爆破后轮廓

    Figure  3.  Outline after blasting

    图  4  块度分布

    Figure  4.  Distribution of fragmented rocks in blasting

    图  5  爆堆质量(M)随最小抵抗线(W)变化关系

    Figure  5.  Variation of mass with minimum resistance line

    图  6  线性拟合曲线

    Figure  6.  Linear fitting curves

    图  7  分形维数随最小抵抗线变化关系

    Figure  7.  Variation of fractal dimension with minimum resistance line

    图  8  破碎能耗和能耗密度的变化规律

    Figure  8.  Variations of fracture energy and energy density with minimum resistance line

    图  9  破碎能耗密度e和分形维数D的变化规律

    Figure  9.  Variations of fracture energy (e) density and fractal dimension (D) with minimum resistance line

    表  1  材料物理力学参数

    Table  1.   Physical and mechanical parameters of materials

    密度/(kg∙m−3纵波波速/(m∙s−1泊松比抗压强度/MPa弹性模量/GPa断裂韧性/(MPa∙m1/2
    1 8502 3260.2358.3810.021.50
    下载: 导出CSV

    表  2  炸药性能

    Table  2.   Explosive performance

    炸药类别线密度/(kg∙m−1爆热/(kJ∙kg−1爆力/mL爆速/(m∙s−1
    黑索金0.02556004808300
    下载: 导出CSV

    表  3  爆破参数

    Table  3.   Parameters of blasting

    编号孔深/mm药卷直径/mm药量/g装药长度/mm单耗/(kg·m−3最小抵抗线/mm
    122561.58400.49120
    22450.33140
    32650.24160
    42850.17180
    53050.13200
    下载: 导出CSV

    表  4  岩块累计质量占比

    Table  4.   Cumulative mass ratio of rock blocks

    抵抗线/mm爆堆质量/kg不同尺寸破碎块体长度分布占比
    <50 mm<70 mm<90 mm<110 mm<130 mm<150 mm
    12020.600.170.390.510.620.791
    14028.900.130.300.480.590.781
    16042.040.140.290.460.580.771
    18055.390.130.310.450.570.771
    20057.660.100.250.350.550.751
    下载: 导出CSV

    表  5  拟合函数

    Table  5.   Fitting function

    抵抗线/mm拟合函数DR2
    120ln yi=1.38 ln(xi/12)1.620.97
    140ln yi=1.49 ln(xi/12)1.510.96
    160ln yi=1.55 ln(xi/12)1.450.97
    180ln yi=1.59 ln(xi/12)1.410.98
    200ln yi=1.72 ln(xi/12)1.280.96
    下载: 导出CSV

    表  6  破碎能分布参数

    Table  6.   Parameter of fragmentation energy

    抵抗线/
    mm
    破碎质量/
    kg
    原表面积/
    m2
    岩块表面积/
    m2
    新增表面积/
    m2
    破碎能/
    J
    破碎体积/
    (10−3 m3
    破碎能耗密度/
    (kJ·m−3
    破碎能利用率/
    %
    12020.600.151.130.98 440.011.1339.51 4.97
    14028.900.191.501.31 589.515.6237.73 6.66
    16042.040.242.131.89 848.722.7237.35 9.59
    18055.390.292.752.461106.529.9436.9612.51
    20057.660.302.712.421084.831.1634.8012.26
    下载: 导出CSV
  • [1] WHITTLES D N, KINGMAN S, LOWNDES I, et al. Laboratory and numerical investigation into the characteristics of rock fragmentation [J]. Minerals Engineering, 2006, 19(14): 1418–1429. DOI: 10.1016/j.mineng.2006.02.004.
    [2] HAMDI E, DU MOUZA J, FLEURISSON J A. Evaluation of the part of blasting energy used for rock mass fragmentation [J]. Fragblast, 2001, 5(3): 180–193. DOI: 10.1076/frag.5.3.180.7386.
    [3] GRADY D E. Length scales and size distributions in dynamic fragmentation [J]. International Journal of Fracture, 2010, 163(1−2): 85–99. DOI: 10.1007/s10704-009-9418-4.
    [4] DARYADEL S S, MANTENA P R, KIM K, et al. Dynamic response of glass under low-velocity impact and high strain-rate SHPB compression loading [J]. Journal of Non-Crystalline Solids, 2016, 432: 432–439. DOI: 10.1016/j.jnoncrysol.2015.10.043.
    [5] 杨仁树, 许鹏. 爆炸作用下介质损伤破坏的分形研究 [J]. 煤炭学报, 2017, 42(12): 3065–3071. DOI: 10.13225/j.cnki.jccs.2017.0107.

    YANG R S, XU P. Fractal study of media damage under blasting loading [J]. Journal of China Coal Society, 2017, 42(12): 3065–3071. DOI: 10.13225/j.cnki.jccs.2017.0107.
    [6] 杨仁树, 李炜煜, 杨国梁, 等. 炸药类型对富铁矿爆破效果影响的试验研究 [J]. 爆炸与冲击, 2020, 40(6): 065201. DOI: 10.11883/bzycj-2019-0396.

    YANG R S, LI W Y, YANG G L, et al. Experimental study on the blasting effects of rich-iron ore with different explosives [J]. Explosion and Shock Waves, 2020, 40(6): 065201. DOI: 10.11883/bzycj-2019-0396.
    [7] 李清, 王平虎, 杨仁树, 等. 切槽孔爆破动态力学特征的动焦散线实验 [J]. 爆炸与冲击, 2009, 29(4): 413–418. DOI: 10.11883/1001-1455(2009)04-0413-06.

    LI Q, WANG P H, YANG R S, et al. Experimental investigation on dynamic mechanical behaviors of cracks induced by V-notch borehole blasting with dynamic caustics [J]. Explosion and Shock Waves, 2009, 29(4): 413–418. DOI: 10.11883/1001-1455(2009)04-0413-06.
    [8] 吴亮, 卢文波, 宗琦. 岩石中柱状装药爆炸能量分布 [J]. 岩土力学, 2006, 27(5): 735–739. DOI: 10.3969/j.issn.1000-7598.2006.05.010.

    WU L, LU W B, ZONG Q. Distribution of explosive energy consumed by column charge in rock [J]. Rock and Soil Mechanics, 2006, 27(5): 735–739. DOI: 10.3969/j.issn.1000-7598.2006.05.010.
    [9] 冷振东, 卢文波, 范勇, 等. 侧向起爆条件下的爆炸能量分布及其对破岩效果的影响 [J]. 爆炸与冲击, 2017, 37(4): 661–669. DOI: 10.11883/1001-1455(2017)04-0661-09.

    LENG Z D, LU W B, FAN Y, et al. Explosion energy distribution by side initiation and its effects on rock fragmentation [J]. Explosion and Shock Waves, 2017, 37(4): 661–669. DOI: 10.11883/1001-1455(2017)04-0661-09.
    [10] 胡振中, 庄亚明, 蔡天意, 等. 单颗粒煤岩冲击破碎能耗与粒度分布特性试验研究 [J]. 煤炭学报, 2015, 40(S1): 230–234. DOI: 10.13225/j.cnki.jccs.2014.1179.

    HU Z Z, ZHUANG Y M, CAI T Y, et al. Experimental study on energy consumption and particle size distribution of single particle coal under impact crushing [J]. Journal of China Coal Society, 2015, 40(S1): 230–234. DOI: 10.13225/j.cnki.jccs.2014.1179.
    [11] 李祥龙, 王建国, 张智宇, 等. 应变率及节理倾角对岩石模拟材料动力特性的影响 [J]. 爆炸与冲击, 2016, 36(4): 483–490. DOI: 10.11883/1001-1455(2016)04-0483-08.

    LI X L, WANG J G, ZHANG Z Y, et al. Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials [J]. Explosion and Shock Waves, 2016, 36(4): 483–490. DOI: 10.11883/1001-1455(2016)04-0483-08.
    [12] 甘德清, 刘志义, 李占金, 等. 冲击载荷作用下磁铁矿石破碎能耗特征 [J]. 岩石力学与工程学报, 2018, 37(S1): 3500–3506. DOI: 10.13722/j.cnki.jrme.2016.1150.

    GAN D Q, LIU Z Y, LI Z J, et al. Broken energy dissipation characteristics of magnetite under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3500–3506. DOI: 10.13722/j.cnki.jrme.2016.1150.
    [13] 武仁杰, 李海波, 李晓锋, 等. 冲击载荷作用下层状岩石破碎能耗及块度特征 [J]. 煤炭学报, 2020, 45(3): 1053–1060. DOI: 10.13225/j.cnki.jccs.2019.0266.

    WU R J, LI H B, LI X F, et al. Broken energy dissipation and fragmentation characteristics of layered rock under impact loading [J]. Journal of China Coal Society, 2020, 45(3): 1053–1060. DOI: 10.13225/j.cnki.jccs.2019.0266.
    [14] 叶洲元, 李夕兵, 万国香, 等. 受三维静载压缩岩石对冲击能的吸收效应 [J]. 爆炸与冲击, 2009, 29(4): 419–424. DOI: 10.11883/1001-1455(2009)04-0419-06.

    YE Z Y, LI X B, WAN G X, et al. Impact energy-absorption property of rock under tri-axial compression [J]. Explosion and Shock Waves, 2009, 29(4): 419–424. DOI: 10.11883/1001-1455(2009)04-0419-06.
    [15] 祝文化, 明锋, 宋成梓. 爆破荷载作用下岩体损伤破坏的分形研究 [J]. 岩土力学, 2011, 32(10): 3131–3135. DOI: 10.3969/j.issn.1000-7598.2011.10.040.

    ZHU W H, MING F, SONG C Z. Fractal study of rock damage under blasting loading [J]. Rock and Soil Mechanics, 2011, 32(10): 3131–3135. DOI: 10.3969/j.issn.1000-7598.2011.10.040.
    [16] 于永江, 王来贵, 何峰. 煤体爆堆块度分布的测试 [J]. 煤炭学报, 2005, 30(3): 337–339. DOI: 10.3321/j.issn:0253-9993.2005.03.015.

    YU Y J, WANG L G, HE F. The fragmentation distribution testing of rock blasting [J]. Journal of China Coal Society, 2005, 30(3): 337–339. DOI: 10.3321/j.issn:0253-9993.2005.03.015.
    [17] BAO R H, ZHANG L C, YAO Q Y et al. Estimating the peak indentation force of the edge chipping of rocks using single point-attack pick [J]. Rock Mechanics and Rock Engineering, 2011, 44(3): 339–347. DOI: 10.1007/s00603-010-0133-2.
    [18] 许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析 [J]. 岩土力学, 2012, 33(11): 3225–3229.

    XU J Y, LIU S. Research on fractal characteristics of marble fragments subjected to impact loading [J]. Rock and Soil Mechanics, 2012, 33(11): 3225–3229.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  231
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2020-09-16
  • 网络出版日期:  2021-06-10
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回