基于SHPB实验的砂岩动态破坏过程及应变-损伤演化规律研究

张明涛 王伟 王奇智 张思怡

张明涛, 王伟, 王奇智, 张思怡. 基于SHPB实验的砂岩动态破坏过程及应变-损伤演化规律研究[J]. 爆炸与冲击, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288
引用本文: 张明涛, 王伟, 王奇智, 张思怡. 基于SHPB实验的砂岩动态破坏过程及应变-损伤演化规律研究[J]. 爆炸与冲击, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288
ZHANG Mingtao, WANG Wei, WANG Qizhi, ZHANG Siyi. Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments[J]. Explosion And Shock Waves, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288
Citation: ZHANG Mingtao, WANG Wei, WANG Qizhi, ZHANG Siyi. Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments[J]. Explosion And Shock Waves, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288

基于SHPB实验的砂岩动态破坏过程及应变-损伤演化规律研究

doi: 10.11883/bzycj-2020-0288
基金项目: 国家自然科学基金(51979170,U1967208);河北省自然科学基金青年基金(E2020208071)
详细信息
    作者简介:

    张明涛(1994- ),男,硕士,2868992828@qq.com

    通讯作者:

    王奇智(1987- ),男,博士,讲师,wangqizhi118@126.com

  • 中图分类号: O346.4;TU45

Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments

  • 摘要: 为研究砂岩型铀矿爆破增渗地浸开采过程中赋矿岩层的破坏特征及损伤演化规律, 利用带有应变控制环的SHPB实验系统,对砂岩试样进行控制应变条件下的动态冲击实验,并结合波速测试实验和CT扫描实验,分析研究了砂岩试样的整体破坏过程、裂纹分布及应变-损伤演化规律。实验结果表明:在冲击荷载作用下,当应变值超过0.008 3时,砂岩试样会突然出现明显的整体破坏,整体破坏形式近似双锥形,其破坏模式为剪切-张拉混合破坏;随着应变的增加,裂纹的产生及扩展大致分为无裂纹阶段(0~0.003 3)、微裂纹起裂阶段(0.003 3~0.008 3)、裂纹贯通阶段(0.008 3~0.009 9)3个阶段,且裂纹分布区域主要集中在试样中间外围。分别从宏观、细观两方面建立了应变-损伤之间的定量关系式,损伤变量随应变的增长趋势大致分为两个阶段:平缓发展区(0~0.008 3)和迅速增长区(0.008 3~0.011 5),损伤变量随应变增加并非简单的线性增加,而是应变值超过应变损伤阈值之后损伤程度急剧增加,应变损伤阈值为0.008 3。
  • 图  1  SHPB实验系统组成

    Figure  1.  Diagram of SHPB experimental system

    图  2  SHPB实验系统照片

    Figure  2.  Photo of SHPB experimental system

    图  3  应变控制环与锁扣的照片

    Figure  3.  Photos of strain control ring and lock catch

    图  4  应变控制环组成

    Figure  4.  Diagram of strain control ring

    图  5  打磨后的砂岩试样

    Figure  5.  Sandstone samples after grinding and finishing

    图  6  不同应变率下砂岩的破坏特征

    Figure  6.  Failure characteristics of sandstones under different strain rates

    图  7  横向拉伸引起的裂纹

    Figure  7.  Cracks caused by transverse tension

    图  8  不同控制应变下砂岩试样的破坏状态

    Figure  8.  Failure states of sandstone samples under different controlled strains

    图  9  ε=0.001 7冲击下试样CT扫描图

    Figure  9.  CT scans of the sample under impact at ε=0.001 7

    图  10  ε=0.003 3冲击下试样CT扫描图

    Figure  10.  CT scans of the sample under impact at ε=0.003 3

    图  11  ε=0.005 0冲击下试样CT扫描图

    Figure  11.  CT scans of the sample under impact at ε=0.005 0

    图  12  ε=0.006 6冲击下试样CT扫描图

    Figure  12.  CT scans of the sample under impact at ε=0.006 6

    图  13  ε=0.008 3冲击下试样CT扫描图

    Figure  13.  CT scans of the sample under impact at ε=0.008 3

    图  14  ε=0.009 9冲击下试样CT扫描图

    Figure  14.  CT scans of the sample under impact at ε=0.009 9

    图  15  试样破坏示意图

    Figure  15.  Schematic diagram of sample failure

    图  16  自然界中双锥形破坏的照片

    Figure  16.  Photo of the biconical destruction in nature

    图  17  声波测速实验数据及其拟合曲线

    Figure  17.  Experimental data and fitting curve of acoustic velocity measurement

    图  18  微焦点3D计算机断层扫描系统

    Figure  18.  Microfocal 3D computed tomography system

    图  19  无损砂岩试样三维重构图

    Figure  19.  Three dimensional reconstruction of non-destructive sandstone samples

    图  20  三维可视化渲染图

    Figure  20.  Three dimensional visual rendering

    图  21  CT扫描实验数据及其拟合曲线

    Figure  21.  Experimental data and fitting curve of CT scanning

    表  1  砂岩基本物理力学参数

    Table  1.   Basic physical and mechanical parameters of gray sandstone

    密度/(kg·m−3纵波波速/(m·s−1抗压强度/MPa弹性模量/GPa泊松比
    2 4162 57888.312.90.25
    下载: 导出CSV

    表  2  声波波速测试结果

    Table  2.   Experiment results of acoustic wave velocities

    试样应变冲击速度/(m·s−1冲击前纵波波速/(m·s−1冲击后纵波波速/(m·s−1损伤变量
    30.05-10.001 76.325 03 2373 2120.015 387
    30.05-26.526 63 3073 2860.012 660
    30.05-36.331 33 1033 0840.012 209
    30.10-10.003 36.556 23 0793 0030.048 757
    30.10-26.259 43 2853 1970.052 859
    30.10-36.680 53 2793 2010.047 010
    30.15-10.005 06.317 23 3163 1930.072 810
    30.15-26.698 93 4143 2790.077 522
    30.15-36.167 43 3953 2700.072 282
    30.20-10.006 66.643 53 3223 1030.127 502
    30.20-26.533 63 0842 8920.120 638
    30.20-36.503 83 0842 9190.104 141
    30.25-10.008 36.923 13 3452 9860.203 130
    30.25-26.252 23 1372 7910.208 428
    30.25-36.612 03 2912 9590.191 585
    30.30-10.009 96.309 13 1232 2200.494 685
    30.30-26.282 73 1232 2020.502 846
    30.30-36.394 33 1302 3490.436 781
    30.35-10.011 56.514 13 323 01
    30.35-26.355 93 402 01
    30.35-36.545 43 171 01
    30.40-10.013 16.439 73 155 01
    30.40-26.320 23 080 01
    30.40-36.720 23 121 01
    下载: 导出CSV

    表  3  CT扫描损伤测试结果

    Table  3.   CT scan damage experiment results

    试样应变冲击速度/(m·s−1损伤变量
    30.05-30.001 76.526 60.000 02
    30.10-10.003 36.556 20.000 09
    30.15-20.005 06.317 20.001 14
    30.20-30.006 66.533 60.010 86
    30.25-30.008 36.923 10.076 38
    30.30-10.009 96.309 10.387 60
    下载: 导出CSV
  • [1] 苏学斌, 杜志明. 我国地浸采铀工艺技术发展现状与展望 [J]. 中国矿业, 2012, 21(9): 79–83. DOI: 10.3969/j.issn.1004-4051.2012.09.021.

    SU X B, DU Z M. Development and prospect of China uranium in-situ leaching technology [J]. China Mining Magazine, 2012, 21(9): 79–83. DOI: 10.3969/j.issn.1004-4051.2012.09.021.
    [2] 梁卫国, 赵阳升, 徐素国, 等. 原位溶浸采矿理论研究 [J]. 太原理工大学学报, 2012, 43(3): 382–387. DOI: 10.3969/j.issn.1007-9432.2012.03.030.

    LIANG W G, ZHAO Y S, XU S G, et al. Theoretical study of in-situ solution mining [J]. Journal of Taiyuan University of Technology, 2012, 43(3): 382–387. DOI: 10.3969/j.issn.1007-9432.2012.03.030.
    [3] 王伟, 李小春. 低渗透砂岩型铀矿床增渗方法及其可行性研究 [J]. 岩土力学, 2009, 30(8): 2309–2314. DOI: 10.16285/j.rsm.2009.08.002.

    WANG W, LI X C. Study of enhanced permeability methods and their feasibility in low-permeability sandstone-type uranium deposit [J]. Rock and Soil Mechanics, 2009, 30(8): 2309–2314. DOI: 10.16285/j.rsm.2009.08.002.
    [4] LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1976, 13(6): 187–197. DOI: 10.1016/0148-9062(76)91285-7.
    [5] 宫凤强, 李夕兵, 刘希灵. 三维动静组合加载下岩石力学特性试验初探 [J]. 岩石力学与工程学报, 2011, 30(6): 1179–1190.

    GONG F Q, LI X B, LIU X L. Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1179–1190.
    [6] 宫凤强, 李夕兵, 刘希灵. 三轴SHPB加载下砂岩力学特性及破坏模式试验研究 [J]. 振动与冲击, 2012, 31(8): 29–32. DOI: 10.13465/j.cnki.jvs.2012.08.006.

    GONG F Q, LI X B, LIU X L, et al. Tests for sandstone mechnical properties and failure model under triaxial SHPB loading [J]. Journal of Vibration and Shock, 2012, 31(8): 29–32. DOI: 10.13465/j.cnki.jvs.2012.08.006.
    [7] 金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [8] 刘希灵, 崔佳慧, 王金鹏, 等. 不同应变率下岩石冲击破坏的声发射特性研究 [J]. 爆破, 2018, 35(1): 1–8. DOI: 10.3963/j.issn.1001-487X.2018.01.001.

    LIU X L, CUI J H, WANG J P, et al. Acoustic emission characteristics analysis of rock under impact loading of different strain rate [J]. Blasting, 2018, 35(1): 1–8. DOI: 10.3963/j.issn.1001-487X.2018.01.001.
    [9] 高文学. 岩石动态响应特性及损伤模型研究[D]. 北京: 北京理工大学, 1999.
    [10] LIU L Q, KATSABANIS P D. Development of a continuum damage model for blasting analysis [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 217–231. DOI: 10.1016/S0148-9062(96)00041-1.
    [11] RAYNAUD S, FABRE D, MAZEROLLE F, et al. Analysis of the internal structure of rocks and characterisation of mechanical deformation by a non-destructive method: X-ray tomodensitometry [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(6): 293–294. DOI: 10.1016/0148-9062(89)91486-1.
    [12] KAWAKATA H, CHO A, KIYAMA T, et al. Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan [J]. Tectonophysics, 1999, 313(3): 293–305. DOI: 10.1016/S0040-51(99)00205-X.
    [13] KAWAKATA H, CHO A, YANAGIDANI T, et al. Gross structure of a fault during its formation process in Westerly granite [J]. Tectonophysics, 2000, 323(1−2): 61–76. DOI: 10.1016/S0040-1951(00)00088-3.
    [14] HUANG S, XIA K, ZHENG H. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading [J]. Review of Scientific Instruments, 2013, 84(9): 093903. DOI: 10.1063/1.4821497.
    [15] 王洪亮, 范鹏贤, 王明洋, 等. 应变率对红砂岩渐进破坏过程和特征应力的影响 [J]. 岩土力学, 2011, 32(5): 1340–1346. DOI: 10.16285/j.rsm.2011.05.008.

    WANG H L, FAN P X, WANG M Y, et al. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone [J]. Rock and Soil Mechanics, 2011, 32(5): 1340–1346. DOI: 10.16285/j.rsm.2011.05.008.
    [16] 金解放. 静载荷与循环冲击组合作用下岩石动态力学特性研究[D]. 长沙: 中南大学, 2012: 13−82. DOI: 10.7666/d.y2198002.
    [17] 杨军, 高文学. 岩石冲击损伤特性的声波测试研究 [J]. 黑龙江矿业学院学报, 2000, 10(1): 50–53. DOI: 10.3969/j.issn.1671-0118.2000.01.015.

    YANG J, GAO W X. Experimental study on damage properties of rock under dynamic loading [J]. Journal of Helongjiang Mining Institute, 2000, 10(1): 50–53. DOI: 10.3969/j.issn.1671-0118.2000.01.015.
    [18] KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(4): A178. DOI: 10.1016/0148-9062(88)91668-3.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  316
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-11-14
  • 网络出版日期:  2021-08-16
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回