毫秒延时爆破等效单响药量计算及振速预测

何理 杨仁树 钟东望 李鹏 吴春平 陈江伟

何理, 杨仁树, 钟东望, 李鹏, 吴春平, 陈江伟. 毫秒延时爆破等效单响药量计算及振速预测[J]. 爆炸与冲击, 2021, 41(9): 095201. doi: 10.11883/bzycj-2020-0363
引用本文: 何理, 杨仁树, 钟东望, 李鹏, 吴春平, 陈江伟. 毫秒延时爆破等效单响药量计算及振速预测[J]. 爆炸与冲击, 2021, 41(9): 095201. doi: 10.11883/bzycj-2020-0363
HE Li, YANG Renshu, ZHONG Dongwang, LI Peng, WU Chunping, CHEN Jiangwei. Calculation of equivalent charge weight per delay and vibration velocity prediction for millisecond delay blasting[J]. Explosion And Shock Waves, 2021, 41(9): 095201. doi: 10.11883/bzycj-2020-0363
Citation: HE Li, YANG Renshu, ZHONG Dongwang, LI Peng, WU Chunping, CHEN Jiangwei. Calculation of equivalent charge weight per delay and vibration velocity prediction for millisecond delay blasting[J]. Explosion And Shock Waves, 2021, 41(9): 095201. doi: 10.11883/bzycj-2020-0363

毫秒延时爆破等效单响药量计算及振速预测

doi: 10.11883/bzycj-2020-0363
基金项目: 国家自然科学基金(51904210,51934001);湖北省重点研发计划(2020BCA084);长江科学院开放研究基金(CKWV2018473/KY);冶金工业过程系统科学湖北省重点实验室开放研究基金(Z202001)
详细信息
    作者简介:

    何 理(1986- ),男,博士,副教授,emp-heli@hotmail.com

  • 中图分类号: O389

Calculation of equivalent charge weight per delay and vibration velocity prediction for millisecond delay blasting

  • 摘要: 毫秒延时爆破存在同段雷管离散及分段振波叠加效应,对单响药量取值及质点峰值振速的预报带来极大困扰。设计开展毫秒延时爆破试验,建立群孔齐发爆破振速的计算模型,研究并构建炮孔数目对齐发爆破等效药量影响及其取值方法;并基于单孔爆破回归分析结果,提出修正的质点峰值振速与比例距离关系公式。结果表明,群孔齐发爆破等效药量比名义单响药量小,可利用缩比系数和折算炮孔数目进行计算,缩比系数随炮孔数目增加呈指数形式衰减;修正的质点峰值振速与比例距离公式引入的振波叠加因子可反映振波叠加对速度的影响,依据该公式计算得到的质点峰值振速预测值与实测值间平均绝对误差、平均相对误差及均方根误差分别为0.05 cm/s、9.52%、0.059 cm/s,用于现场爆破振动预测切实可行。
  • 图  1  炮孔装药结构

    Figure  1.  Charge structure of blast-hole

    图  2  毫秒延时起爆网路

    Figure  2.  Initiation network of millisecond delay blasting

    图  3  振动速度监测方案

    Figure  3.  Monitoring scheme of vibration velocity

    图  4  单孔爆破振速随比例距离的变化关系

    Figure  4.  Relation between blast vibration velocity for single-hole blasting and scaled distance

    图  5  单孔爆破振速叠加方法示意图

    Figure  5.  Schematic diagram of superposition method for vibration velocity in single-hole blasting

    图  6  群孔分散装药齐发爆破振速计算模型

    Figure  6.  Calculation model of vibration velocity for simultaneous blasting of muti-hole with dispersed charge

    图  7  各炮孔起爆时间窗

    Figure  7.  Detonation time window for each blast-hole

    图  8  缩比系数随炮孔数目的变化关系

    Figure  8.  Variation relationship between the scaling factor and the blast-hole number

    图  9  毫秒延时爆破各测点峰值振动速度的实测值与预测值

    Figure  9.  Actual and predicted particle peak vibration velocities at each measuring point in millisecond delay blasting

    图  10  实测vp与预测vps变化关系

    Figure  10.  Relationship between actual vp and predicted vps

    图  11  矿区实例中vp实测值与预测值变化关系

    Figure  11.  Relationship between actual and predicted vp values in mining area

    图  12  不同观测点处vp实测值与预测值的对比情况

    Figure  12.  Comparison of the actual and predicted vp values at different observation points

    表  1  爆破参数

    Table  1.   Blasting parameters

    爆破类型孔径Φ/mm孔距a/m排距b/m孔深l/m装药长度l1/m堵塞长度l2/m单孔药量Q0/kg
    31#孔爆破11514.38.85.581
    32#孔爆破11515.511.04.5100
    毫秒延时爆破1156414.3~16.99.8~10.94.5~689~95
     注:现场爆破试验使用2#岩石乳化炸药,参见文献[29]将炮孔装药量折算为TNT当量.
    下载: 导出CSV

    表  2  毫秒延时爆破药量统计

    Table  2.   Charge statistics of millisecond delay blasting

    炮孔排数i炮孔编号炮孔总药量/kg炮孔平均装药量/kg
    [(i−1)×3+1][(i−1)×3+2][(i−1)×3+3]
    191959327993.0
    289949427792.3
    390929327591.7
    492919227591.7
    591929327692.0
    692919227591.7
    792929227692.0
    891929227591.7
    992929227692.0
    1092929327792.3
     注:现场爆破试验使用2#岩石乳化炸药,参见文献[29]将炮孔装药量折算为TNT当量
    下载: 导出CSV

    表  3  测点布置方案

    Table  3.   Layout scheme of measuring points

    爆破类型测点爆心距R/m
    31#孔爆破1522354048
    32#孔爆破1522354048
    毫秒延时爆破15182227303438414549
    下载: 导出CSV

    表  4  爆破振动测试数据

    Table  4.   Blasting vibration test data

    31#孔爆破32#孔爆破毫秒延时爆破
    R/mvp/(cm·s−1Ds/(m·kg−1/3R/mvp/(cm·s−1Ds/(m·kg−1/3R/mvp/(cm·s−1Ds/(m·kg−1/3
    1510.85 3.521512.21 3.281516.062.82
    1812.103.38
    22 7.90 5.1622 9.25 4.812211.834.13
    2710.205.07
    30 8.255.63
    35 6.68 8.2135 7.30 7.6634 7.146.38
    38 7.887.13
    40 4.81 9.3840 5.42 8.7541 7.577.69
    45 6.498.45
    48 4.2411.2648 5.2110.5049 6.489.20
    下载: 导出CSV

    表  5  单孔爆破振速的实测值与预测值对比

    Table  5.   Comparison of blast vibration velocity for single-hole blasting between measured and predicted values

    实测值/(cm·s−1预测值/(cm·s−1绝对误差/(cm·s−1相对误差/%实测值/(cm·s−1预测值/(cm·s−1绝对误差/(cm·s−1相对误差/%
    10.8511.40−0.55 5.0512.2112.03 0.18 1.46
    7.90 8.50 0.60 7.59 9.25 8.97 0.28 3.03
    6.68 5.95 0.7310.89 7.30 6.28 1.0214.00
    4.81 5.37−0.5611.73 5.42 5.67−0.25 4.59
    4.24 4.67−0.4310.18 5.21 4.93 0.28 5.39
    下载: 导出CSV

    表  6  爆破设计参数及$v_{\rm p} $

    Table  6.   Blasting design parameters and $v_{\rm p} $ values

    爆破次数孔径/mm炮孔数目最大单响药量/kg爆心距/m比例距离/(m·kg−1/3vp/(cm·s−1绝对误差/(cm·s−1相对误差/%
    实测值预测值
    1903248622428.551.151.160.010.77
    903248624130.721.041.030.011.42
    903248626834.160.910.860.055.27
    903248630038.240.780.720.067.43
    903248634744.230.680.580.1014.51
    903248639049.710.390.490.1026.65
    2902131935351.760.510.470.048.24
    902131925236.950.800.760.044.84
    902131927740.620.720.660.068.51
    902131930945.310.520.560.047.99
    902131939858.360.340.400.0618.25
    3903132631946.440.550.540.011.39
    903132633248.330.460.510.0511.55
    903132635351.390.470.470.000.52
    903132638155.470.350.430.0822.32
    903132641961.000.480.380.1020.54
    903132645766.530.390.350.0411.37
    4902852526232.550.940.930.010.83
    902852527534.160.760.860.1013.42
    902852529736.890.730.760.034.54
    902852532640.500.650.660.011.81
    902852536645.460.480.560.0816.43
    902852540650.430.540.480.0610.30
     注:由于生产爆破时使用数码电子雷管实现段间延期,数码电子雷管可确保设计延期时间与实际延期时间高度一致[37],因此表6中最大单响药   量取值为名义最大单响药量
    下载: 导出CSV
  • [1] 何理, 钟东望, 李鹏, 等. 下穿隧道爆破荷载激励下边坡振动预测及能量分析 [J]. 爆炸与冲击, 2020, 40(7): 108–117. DOI: 10.11883/bzycj-2019-0255.

    HE L, ZHONG D W, LI P, et al. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel [J]. Explosion and Shock Waves, 2020, 40(7): 108–117. DOI: 10.11883/bzycj-2019-0255.
    [2] 武旭, 张云鹏, 郭奇峰. 台阶地形爆破振动放大与衰减效应研究 [J]. 爆炸与冲击, 2017, 37(6): 1017–1022. DOI: 10.11883/1001-1455(2017)06-1017-06.

    WU X, ZHANG Y P, GUO Q F. Amplification and attenuation effect of blasting vibration on step topography [J]. Explosion and Shock Waves, 2017, 37(6): 1017–1022. DOI: 10.11883/1001-1455(2017)06-1017-06.
    [3] 何理, 钟冬望, 陈晨, 等. 岩质高边坡开挖施工的爆破振动监测与分析 [J]. 金属矿山, 2017(1): 6–10. DOI: 10.3969/j.issn.1001-1250.2017.01.002.

    HE L, ZHONG D W, CHEN C, et al. Monitoring and analysis of blasting vibration in high rocky slope excavation [J]. Metal Mine, 2017(1): 6–10. DOI: 10.3969/j.issn.1001-1250.2017.01.002.
    [4] 唐海, 李海波. 反映高程放大效应的爆破振动公式研究 [J]. 岩土力学, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.

    TANG H, LI H B. Study of blasting vibration formula of reflecting amplification effect on elevation [J]. Rock and Soil Mechanics, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.
    [5] 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2189–2195. DOI: 10.1007/s11629-011-1023-0.

    CHEN M, LU W B, LI P, et al. Elevation amplification effect of blasting vibration velocity in rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189–2195. DOI: 10.1007/s11629-011-1023-0.
    [6] 龚相超, 钟冬望, 司剑峰, 等. 高饱和黏性土中爆炸波作用下直埋钢管(空管)动态响应 [J]. 爆炸与冲击, 2020, 40(2): 13–25. DOI: 10.11883/bzycj-2018-0443.

    GONG X C, ZHONG D W, SI J F, et al. Dynamic responses of hollow steel pipes directly buried in high-saturated clay to blast waves [J]. Explosion and Shock Waves, 2020, 40(2): 13–25. DOI: 10.11883/bzycj-2018-0443.
    [7] QIU X Y, SHI X Z, GOU Y G, et al. Short-delay blasting with single free surface: results of experimental tests [J]. Tunnelling and Underground Space Technology, 2018, 74: 119–130. DOI: 10.1016/j.tust.2018.01.014.
    [8] CARDU M, CORAGLIOTTO D, ORESTE P. Analysis of predictor equations for determining the blast-induced vibration in rock blasting [J]. International Journal of Mining Science and Technology, 2019, 29(6): 905–915. DOI: 10.1016/j.ijmst.2019.02.009.
    [9] DOWDING C H. Blast vibration monitoring and control [M]. New Jersey: Prentice-Hall, 1985: 167−171.
    [10] 杨年华. 爆破振动信号精细解读与振动控制[C]// 爆破工程技术交流论文集.北京: 中国铁道学会工程分会, 2018.
    [11] 顾毅成. 对毫秒延时爆破地震公式的讨论 [J]. 铁道建筑, 2005(S1): 73–75. DOI: 10.3969/j.issn.1003-1995.2005.z1.027.

    GU Y C. Discussion on seismic formula concerning multistage millisecond explosion [J]. Railway Engineering, 2005(S1): 73–75. DOI: 10.3969/j.issn.1003-1995.2005.z1.027.
    [12] 刘殿中. 工程爆破实用手册[M]. 北京: 地震出版社, 1981.

    LIU Dianzhong. Practical manual of engineering blasting [M]. Beijing: Earthquake Press, 1981.
    [13] 吴绵拔. 土岩微差爆破的振动效应 [J]. 土工基础, 2005(06): 75–76. DOI: 10.3969/j.issn.1004-3152.2005.06.024.

    WU M B. The vibration effect of micro timelag in soil and rock [J]. Soil Engineering and Foundation, 2005(06): 75–76. DOI: 10.3969/j.issn.1004-3152.2005.06.024.
    [14] 薛孔宽, 唐光荣, 曹恒安, 等. 分段微差爆破地震效应的叠加分析 [J]. 爆破, 1991, 8(3): 67–71. DOI: CNKI:SUN:BOPO.0.1991-03-019.

    XUE K K, TANG G R, CAO H A, et al. Superposition analysis of seismic effect of segmented millisecond blasting [J]. Blasting, 1991, 8(3): 67–71. DOI: CNKI:SUN:BOPO.0.1991-03-019.
    [15] 龙源, 冯长根, 徐全军, 等. 爆破地震波在岩石介质中传播特性与数值计算研究 [J]. 工程爆破, 2000(3): 1–7. DOI: 10.3969/j.issn.1006-7051.2000.03.001.

    LONG Y, FENG C G, XU Q J, et al. Study on propagation characteristics of blasting seismic waves in a rock medium and numerical calculation [J]. Engineering Blasting, 2000(3): 1–7. DOI: 10.3969/j.issn.1006-7051.2000.03.001.
    [16] 杨年华. 基于经验格林函数方法的爆破振动预测 [J]. 工程爆破, 2016, 22(5): 32–36. DOI: 10.3969/j.issn.1006-7051.2016.05.007.

    YANG N H. Prediction of blasting vibration based on empirical Green’s function method [J]. Engineering Blasting, 2016, 22(5): 32–36. DOI: 10.3969/j.issn.1006-7051.2016.05.007.
    [17] 王林峰, 邓冰杰, 莫诎, 等. 基于概率论的爆破振动安全评估与控制 [J]. 振动与冲击, 2020, 39(14): 122–129. DOI: 10.13465/j.cnki.jvs.2020.14.018.

    WANG L F, DENG B J, MO Q, et al. Safety assessment and control of blasting vibration based on the probability theory [J]. Journal of Vibration and Shock, 2020, 39(14): 122–129. DOI: 10.13465/j.cnki.jvs.2020.14.018.
    [18] TUMENBAYAR B Y, 夏岸雄, 张建华, 等. 基于遗传算法的神经网络在爆破振动预测中的应用 [J]. 爆破, 2014, 31(3): 140–144. DOI: 10.3963/j.issn.1001-487X.2014.03.29.

    TUMENBAYAR B Y, XIA A X, ZHANG J H, et al. Application of neural network based on genetic algorithm in prediction of blasting vibration [J]. Blasting, 2014, 31(3): 140–144. DOI: 10.3963/j.issn.1001-487X.2014.03.29.
    [19] SHI X Z, ZHOU J. Prediction residential house’s damage effect near openpit against blasting vibration based on SVM with grid searching method/genetic algorithm [J]. Advanced Science Letters, 2012, 11(1): 238–243. DOI: 10.1166/asl.2012.2980.
    [20] 施建俊, 李庆亚, 张琪, 等. 基于Matlab和BP神经网络的爆破振动预测系统 [J]. 爆炸与冲击, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.

    SHI J J, LI Q Y, ZHANG Q, et al. Forecast system for blasting vibration velocity peak based on Matlab and BP neural network [J]. Explosion and Shock Waves, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.
    [21] HASANIPANAH M, FARADONBEH R S, AMNIEH H B, et al. Forecasting blast-induced ground vibration developing a CART model [J]. Engineering with Computers, 2016, 33(2): 307–316. DOI: 10.1007/s00366-016-0475-9.
    [22] YUAN Q, ZHAI S H, WU L, et al. Blasting vibration velocity prediction based on least squares support vector machine with particle swarm optimization algorithm [J]. Geosystem Engineering, 2019, 22(5). DOI: 10.1080/12269328.2019.1607570.
    [23] HASANIPANAH M, NADERI R, KASHIR J, et al. Prediction of blast-produced ground vibration using particle swarm optimization [J]. Engineering with Computers, 2016, 33: 173–179. DOI: 10.1007/s00366-016-0462-1.
    [24] 杨年华, 张乐. 爆破振动波叠加数值预测方法 [J]. 爆炸与冲击, 2012, 32(1): 84–90. DOI: 10.11883/1001-1455(2012)01-0084-07.

    YANG N H, ZHANG L. Blasting vibration waveform prediction method based on superposition principle [J]. Explosion and Shock Waves, 2012, 32(1): 84–90. DOI: 10.11883/1001-1455(2012)01-0084-07.
    [25] 钟冬望, 何理, 操鹏, 等. 爆破振动持时分析及微差爆破延期时间优选 [J]. 爆炸与冲击, 2016, 36(5): 703–709. DOI: 10.11883/1001-1455(2016)05-0703-07.

    ZHONG D W, HE L, CAO P, et al. Analysis of blasting vibration duration and optimizing of delayed time interval for millisecond blasting [J]. Explosion and Shock Waves, 2016, 36(5): 703–709. DOI: 10.11883/1001-1455(2016)05-0703-07.
    [26] 凌同华, 李夕兵, 王桂尧. 爆破震动灾害主动控制方法研究 [J]. 岩土力学, 2007(7): 1439–1442. DOI: 10.3969/j.issn.1000-7598.2007.07.029.

    LIN T H, LI X B, WANG G Y. A study on initiative control of blast vibration damages [J]. Rock and Soil Mechanics, 2007(7): 1439–1442. DOI: 10.3969/j.issn.1000-7598.2007.07.029.
    [27] YANG R L, LOWNDS M. Modeling the effect of delay scatter on peak particle velocity of blast vibration using a multiple seed waveform vibration model [J]. Blasting and Fragmentation, 2011, 5: 31−46. DOI: https://www.researchgate.net/publication/311923105.
    [28] BLAIR D P. Non-linear superposition models of blast vibration [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 235–247. DOI: 10.1016/j.ijrmms.2007.05.002.
    [29] 范俊余, 方 秦, 张亚栋, 等. 岩石乳化炸药TNT当量系数的试验研究 [J]. 兵工学报, 2011, 32(10): 1243–1249.

    FAN J Y, FANG Q, ZHANG Y D, et al. Experimental investigation on the TNT equivalence coefficient of a rock emulsion explosive [J]. Acta Armamentarii, 2011, 32(10): 1243–1249.
    [30] 孙永江, 江利民. 东非地区中低温敏化技术生产乳化炸药的组分与性能分析 [J]. 爆破器材, 2020(5): 42–46.
    [31] 徐俊峰, 马宏昊, 沈兆武, 等. 近临界厚度乳化炸药在金属箔焊接中的应用 [J]. 火炸药学报, 2020, 43(3): 282–286, 292. DOI: 10.14077/j.issn.1007-7812.201907031.

    XU JF, MA H H, SHEN Z W, et al. Application of near critical thickness emulsion explosive in welding of metal foils [J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 282–286, 292. DOI: 10.14077/j.issn.1007-7812.201907031.
    [32] AGRAWAL H, MISHRA A K. Probabilistic analysis on scattering effect of initiation systems and concept of modified charge per delay for prediction of blast induced ground vibrations [J]. Measurement, 2018, 130: 306–317. DOI: 10.1016/j.measurement.2018.08.032.
    [33] 杨月平. 非电起爆网路可靠性研究及其计算评价软件开发[D]. 长沙: 中南大学, 2005: 34−35.

    YANG Y P. Study on the reliability of nonel detonation network and software development for reliability evaluation [D]. Changsha: Central South University, 2005: 34−35.
    [34] 杨志红. 微差起爆技术及其对爆破效应影响研究[D]. 武汉: 武汉大学, 2005: 50−52.

    YANG Z H. Study on millisecond delay blasting and its influence on blasting effect [D]. Wuhan: Wuhan University, 2005: 50−52.
    [35] SINGH P K, SIRVEIYA A K, BABUK N, et al. Evolution of effective charge weight per delay for prediction of ground vibrations generated from blasting in a limestone mine [J]. International Journal of Mining, Reclamation and Environment, 2006, 20(1): 4–19. DOI: 10.1080/13895260500286050.
    [36] AGRAWAL H, MISHRA A K. Evaluation of initiating system by measurement of seismic energy dissipation in surface blasting [J]. Arabian Journal of Geosciences, 2018, 11: 345. DOI: 10.1007/s12517-018-3683-3.
    [37] 何理. 临近边坡精确延时控制爆破地震效应研究[D].武汉: 武汉科技大学, 2015.

    HE L. The research of blasting seismic effect controlling with precise time delay technology nearby slope [D]. Wuhan: Wuhan University of Science and Technology, 2015.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  470
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-11-20
  • 网络出版日期:  2021-08-25
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回