深部硐室长期稳定性的两个力学问题

王明洋 徐天涵 邓树新 陈昊祥

王明洋, 徐天涵, 邓树新, 陈昊祥. 深部硐室长期稳定性的两个力学问题[J]. 爆炸与冲击, 2021, 41(7): 071101. doi: 10.11883/bzycj-2021-0023
引用本文: 王明洋, 徐天涵, 邓树新, 陈昊祥. 深部硐室长期稳定性的两个力学问题[J]. 爆炸与冲击, 2021, 41(7): 071101. doi: 10.11883/bzycj-2021-0023
WANG Mingyang, XU Tianhan, DENG Shuxin, CHEN Haoxiang. Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels[J]. Explosion And Shock Waves, 2021, 41(7): 071101. doi: 10.11883/bzycj-2021-0023
Citation: WANG Mingyang, XU Tianhan, DENG Shuxin, CHEN Haoxiang. Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels[J]. Explosion And Shock Waves, 2021, 41(7): 071101. doi: 10.11883/bzycj-2021-0023

深部硐室长期稳定性的两个力学问题

doi: 10.11883/bzycj-2021-0023
基金项目: 国家自然科学基金重大科研仪器研制项目(51527810);国家自然科学基金青年科学基金(51909120)
详细信息
    作者简介:

    王明洋(1966- ),男,博士,教授,博士生导师,wmyrf@163.com

    通讯作者:

    徐天涵(1995- ),男,博士研究生,martinxu41@126.com

  • 中图分类号: O389; TD322

Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels

  • 摘要: 在陈宗基院士关于地下硐室长期稳定性力学问题研究的基础上,采用Sadovsky院士关于复杂地质岩体的等级构造学说,围绕深部岩体非均匀构造与封闭应力固有的统计力学属性,研究了岩体非均匀变形与封闭应力特性,以及深部硐室围岩的长期稳定性等两个力学问题。给出了岩体非均匀构造与封闭应力的数学表征;根据质量守恒定律得到了计算深部硐室围岩长期变形的一般公式;得到了围岩变形中劈裂扩容变形占主要部分的结论,并且阐明了深部围岩卸荷时更易出现劈裂破坏的原因。给出了劈裂破坏形态的演进序列与扩容位移的计算方法。将围岩松动圈范围、破裂区位置和边壁位移的计算结果与锦屏一级电站厂房现有监测数据进行了对比,两者相当吻合。
  • 图  1  岩体的构造等级示意图

    Figure  1.  Sketch of hierarchical structure of rock blocks

    图  2  n级非均匀构造单元的变形阶段

    Figure  2.  The deformation stages of the nth non-uniform structure

    图  3  硐室开挖前后侧墙围岩应力状态的变化[1]

    Figure  3.  The change of stress state of surrounding rocks before and after the tunneling[1]

    图  4  硐室开挖前后侧墙围岩应力圆[1]

    Figure  4.  The stress circles of surround rocks before and after the tunneling

    图  5  三向应力状态时的强度准则

    Figure  5.  Strength criterion at triaxial stress state

    图  6  锦屏大理岩真三轴实验结果

    Figure  6.  The true triaxial test results of the marble in Jinping.

    图  7  体积变形与剪切变形的关系

    Figure  7.  The relationship between bulk and shear deformations

    图  8  塑性区围岩位移示意图

    Figure  8.  The deformation of surrounding rocks in the plastic zone

    图  9  地下硐室围岩劈裂示意图[1]

    Figure  9.  The schematic diagram of spalling of rocks surrounding deep level tunnels[1]

    图  10  深部围岩劈裂示意图

    Figure  10.  The splitting of deep surrounding rocks

    图  11  深部围岩分区破裂示意图

    Figure  11.  Diagram of zonal disintegration of deep surrounding rocks

    图  12  分区破裂半径计算与监测结果对比[25]

    Figure  12.  A comparison between the in-situ and theoretical radii of zonal disintegration[25]

    表  1  分区破裂区半径ci/a与能量因子k之间的关系[25]

    Table  1.   The relationship between the radii of zonal disintegration ci/a and the energy factor k[25]

    ci/ak
    exp(1/2)1.4×10−6
    exp(1)1.0×10−7
    exp(3/2)1.0×10−8
    exp(2)1.4×10−9
    下载: 导出CSV

    表  2  围岩变形理论与现场实测结果对比

    Table  2.   Comparison of the theoretical and in-situ results

    硐室等效半径/mψΔ理论扩容变形/mm理论剪切变形/mm理论总变形/mm实测变形/mm
    主变室[18]14.170.5×10−2 60.937.0 97.9233.4
    1.0×10−2121.7158.7
    1.5×10−2182.6219.6*
    2.0×10−2243.5280.5
    主厂房[17]23.820.5×10−2102.362.2164.5上游220.0
    下游247.0
    1.0×10−2204.6266.8*
    1.5×10−2307.0369.2
    2.0×10−2409.3471.5
    尾调室[17]17.50 0.5×10−2 75.245.7120.9*125.0
    1.0×10−2150.3196.0
    1.5×10−2225.5271.2
    2.0×10−2300.7346.4
     注:表中数据加*号的阶段为与实际最接近的变形阶段。
    下载: 导出CSV
  • [1] 陈宗基. 地下巷道长期稳定性的力学问题 [J]. 岩石力学与工程学报, 1982, 1(1): 1–20.

    CHEN Z J. The mechanical problems for the long-term stability of ground galleries [J]. Chinese Journal of Rock Mechanics and Engineering, 1982, 1(1): 1–20.
    [2] 陈宗基, 吴海青. 我国在复杂岩层中的巷道掘进——兼论构造应力与时间效应的重要性 [J]. 岩石力学与工程学报, 1988, 7(1): 1–14. DOI: 10.3321/j.issn:1000-324X.1999.03.022.

    CHEN Z J, WU H Q. Tunnelling in complex rock formations in China—importance of geotectonic stress and time effects [J]. Chinese Journal of Rock Mechanics and Engineering, 1988, 7(1): 1–14. DOI: 10.3321/j.issn:1000-324X.1999.03.022.
    [3] 陈宗基, 康文法. 岩石的封闭应力、蠕变和扩容及本构方程 [J]. 岩石力学与工程学报, 1991, 10(4): 299–312.

    CHEN Z J, KANG W F. On the locked in stress, creep and dilatation of rocks, and the constitutive equations [J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(4): 299–312.
    [4] 陈宗基. 根据流变学与地球动力学观点研究新奥法 [J]. 岩石力学与工程学报, 1988, 7(2): 97–106.

    CHEN Z J. The NATM studied from the viewpoint of rheology and geodynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 1988, 7(2): 97–106.
    [5] 陈宗基, 石泽全, 于智海, 等. 用8000 kN多功能三轴仪测量脆性岩石的扩容、蠕变及松弛 [J]. 岩石力学与工程学报, 1989, 8(2): 97–118.

    CHEN Z J, SHI Z Q, YU Z H, et al. Dilatancy creep and relaxation of brittle rocks measured with the 8000 kN multipurpose triaxial apparatus [J]. Chinese Journal of Rock Mechanics and Engineering, 1989, 8(2): 97–118.
    [6] ADUSHKIN V V, SPIVAK A A. Geomechanics of large-scale explosions [M]. Moscow: Nedra, 1993.
    [7] SADOVSKY M A. Nature of lumpiness of rock [J]. Doklady Akademii Nauk SSSR, 1979, 247(4): 829–831.
    [8] KURLENYA M V, ADUSHKIN V V, OPARIN V N. Alternating reaction of rocks to dynamic action [J]. Doklady Akademii Nauk SSSR, 1992, 2: 323.
    [9] KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics. PartⅠ [J]. Journal of Mining Science, 1999, 35(3): 216–230. DOI: 10.1007/BF02550237.
    [10] KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics. PartⅡ [J]. Journal of Mining Science, 2000, 36(4): 305–326. DOI: 10.1023/A:1026673105750.
    [11] 钱七虎. 战略防护工程面临的核钻地弹威胁及连续介质力学模型的不适用性 [M]//钱七虎. 钱七虎院士论文选集. 北京: 科学出版社, 2007.
    [12] KOCHARYAN G G, SPIVAK A A. BUDKOV A M Movement of rock blocks during large-scale underground explosion. Part Ⅱ: estimates by analytical models, numerical calculations, and comparative analysis of theoretical and experimental data [J]. Journal of Mining Science, 2001, 37(2): 149–168. DOI: 10.1023/A:1012327627277.
    [13] KOCHARYAN G G, SPIVAK A A. Movement of rock blocks during large-scale underground explosions. PartⅠ: experimental data [J]. Journal of Mining Science, 2001, 37(1): 64–76. DOI: 10.1023/A:1016736919590.
    [14] 陈宗基. 岩爆的工程实录、理论与控制 [J]. 岩石力学与工程学报, 1987, 6(1): 1–18.

    CHEN Z J. Rockbursts, case records, theory and control [J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(1): 1–18.
    [15] ADUSHKIN V V, OPARIN V N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. PartⅠ [J]. Journal of Mining Science, 2012, 48(2): 203–222. DOI: 10.1134/S1062739148020013.
    [16] ADUSHKIN V V, SPIVAK A A. Chapter 8: the influence of faults, joints, and fractures, on mechanical effects of underground nuclear explosions [M]// ANASTASIA S, PAUL R, trans. Underground Explosions. 2015: 431−479.
    [17] 黄书岭, 王继敏, 丁秀丽, 等. 基于层状岩体卸荷演化的锦屏Ⅰ级地下厂房洞室群稳定性与调控 [J]. 岩石力学与工程学报, 2011, 30(11): 2203–2216.

    HUANG S L, WANG J M, DING X L, et al. Stability and control for underground caverns of JinpingⅠ hydropower station based on unloading evolution of layered rockmass [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2203–2216.
    [18] QIAN Q H, ZHOU X P. Failure behaviors and rock deformation during excavation of underground cavern group for Jinping I hydropower station [J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2639–2651. DOI: 10.1007/s00603-018-1518-x.
    [19] FENG X T, PEI S F, JIANG Q, et al. Deep fracturing of the hard rock surrounding a large underground cavern subjected to high geostress: in situ observation and mechanism analysis [J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2155–2175. DOI: 10.1007/s00603-017-1220-4.
    [20] ZHAO J, FENG X T, ZHANG X W, et al. Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression [J]. Engineering Geology, 2018, 232: 160–170. DOI: 10.1016/j.enggeo.2017.11.008.
    [21] 李帅军, 冯夏庭, 徐鼎平, 等. 白鹤滩水电站主厂房第Ⅰ层开挖期围岩变形规律与机制研究 [J]. 岩石力学与工程学报, 2016, 35(S2): 3947–3959. DOI: 10.13722/j.cnki.jrme.2016.0799.

    LI S J, FENG X T, XU D P, et al. Study of the characteristics and mechanism of surrounding rock deformation during the first layer excavation in Baihetan hydorpower station underground main powerhouses [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3947–3959. DOI: 10.13722/j.cnki.jrme.2016.0799.
    [22] REVUZHENKO A P. Mechanics of elastoplastic media and nonstandard analysis [M]. Novosbirsk: Izd, NGU, 2000.
    [23] WANG M Y, LI J, MA L J, et al. Study on the characteristic energy factor of the deep rock mass under weak disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3165–3173. DOI: 10.1007/s00603-016-0968-2.
    [24] 王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题Ⅲ: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.

    WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part Ⅲ: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
    [25] 王明洋, 陈昊祥, 李杰, 等. 深部巷道分区破裂化计算理论与实测对比研究 [J]. 岩石力学与工程学报, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.

    WANG M Y, CHEN H X, LI J, et al. Theoretical research on zonal disintegration of rock masses around deep tunnels and comparisons with in-situ observations [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.
    [26] 李杰, 陈伟, 施存程, 等. 基于块系构造的大规模地下爆炸不可逆位移计算方法 [J]. 爆炸与冲击, 2018, 38(6): 1271–1277. DOI: 10.11883/bzycj-2017-0201.

    LI J, CHEN W, SHI C C, et al. Calculation method of irreversible displacement region radius based on block hierarchical structure under large-scale underground explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1271–1277. DOI: 10.11883/bzycj-2017-0201.
    [27] ADUSHKIN V V, SPIVAK A A. Underground explosions, section 7.2: description of block deformations [M]. ANASTASIA S, PAUL R, trans, 2015: 424−428.
    [28] 王明洋, 范鹏贤, 李文培. 岩石的劈裂和卸载破坏机制 [J]. 岩石力学与工程学报, 2009, 29(2): 234–241.

    WANG M Y, FAN P X, LI W P. Mechanism of splitting and unloading failure of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 29(2): 234–241.
    [29] LI J, FAN P X, WANG M Y. The stress conditions of rock core disking based on an energy analysis [J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 465–470. DOI: 10.1007/s00603-018-1634-7.
    [30] DENG S X, LI J, JIANG H M, et al. Experimental and theoretical study of the fault slip events of rock masses around underground tunnels induced by external disturbances [J]. Engineering Geology, 2018, 233: 191–199. DOI: 10.1016/j.enggeo.2017.12.007.
    [31] 李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题(Ⅰ): 一维块系岩体波动特性的试验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 38–50. DOI: 10.13722/j.cnki.jrme.2017.0490.

    LI J, JIANG H M, WANG M Y, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅰ: experimental research on properties of one-dimensional wave propagation in block rock masses [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 38–50. DOI: 10.13722/j.cnki.jrme.2017.0490.
    [32] 李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题(Ⅱ): 冲击扰动诱发岩块滑移的物理模拟试验 [J]. 岩石力学与工程学报, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.

    LI J, JIANG H M, WANG M Y, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅱ: physical model test on sliding of rock blocks triggered by external disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.
    [33] BRADY H G, BROWN E T. 地下采矿岩石力学 [M]. 3版. 佘诗刚, 朱万成, 赵文, 等译. 北京: 科学出版社, 2011: 264−269.

    BRADY H G, BROWN E T. Rock mechanics for underground mining [M]. 3rd ed. SHE Shigang, ZHU Wangcheng, ZHAO Wen, et al, trans. Beijing: Science Press, 2001: 264−269.
    [34] KUZNETSOV G N. Contemporary Problems in Rock Mechanics [M]. Moscow: Nauka, 1972.
    [35] BALLIVY G, DAYRE M. The mechanical properties of rocks [J]. Bulletin of the International Association of Engineering Geology, 1984, 29: 339–342. DOI: 10.1007/BF02594432.
    [36] SHEMYAKIN E I. Two problems in rock mechanics arising out of the working of deep ore or coal deposits [J]. Soviet Mining, 1975, 11(6): 632–646. DOI: 10.1007/BF02507493.
    [37] SHEMYAKIN E I. On invariants of the stress-strain state in mathematical models for mechanics of continua [J]. Doklady Physics, 2000, 45(8): 419–421. DOI: 10.1134/1.1310737.
    [38] WILSON A H. The stability of underground workings in the soft rocks of the Coal Measures [J]. International Journal of Mining Engineering, 1983, 1(2): 91–187. DOI: 10.1007/BF00880785.
    [39] NIKOLAEVSKIY V N. Geomechanics and fluidodynamics: with applications to reservoir engineering [M]. Dordrecht: Springer, 1996.
    [40] NIKITIN L V, ODINTSEV V N. A dilatancy model of tensile macrocracks in compressed rock [J]. Fatigue & Fracyure of Engineering Materials & Structures, 1999, 22(11): 1003–1009.
    [41] SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground mines, part Ⅲ: theoretical concepts [J]. Soviet Mining, 1987, 23(1): 1–6. DOI: 10.1046/j.1460-2695.1999.00232.x.
    [42] SHEMYAKIN E I, KURLENYA M V, OPARIN V N, et al. Zonal disintegration of rocks around underground workings. IV. practical applications [J]. Soviet Mining, 1989, 25(4): 297–302. DOI: 10.1007/BF02528546.
    [43] 周钟, 巩满福, 侯东奇, 等. 四川省雅砻江锦屏Ⅰ级水电站地下厂房洞室群施工期围岩稳定与支护设计报告(4) [R]. 成都: 中国水电工程顾问集团成都勘测设计研究院, 2008.

    ZHOU Z, GONG M F, HOU D Q, et al. Report on surrounding rock mass stability and support design for underground powerhouse caverns group construction of Jinping Ⅰ hydropower project located on Yalong River (4) [R]. Chengdu: HydroChina Chengdu Engineering Corporation, 2008.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  416
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-04-27
  • 网络出版日期:  2021-06-17
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回