内埋炸药下超高韧性水泥基复合材料的抗爆性能

吴平 徐世烺 李庆华 周飞 陈柏锟 蒋霄 AL MANSOURAhmed

吴平, 徐世烺, 李庆华, 周飞, 陈柏锟, 蒋霄, AL MANSOURAhmed. 内埋炸药下超高韧性水泥基复合材料的抗爆性能[J]. 爆炸与冲击, 2021, 41(7): 075101. doi: 10.11883/bzycj-2021-0059
引用本文: 吴平, 徐世烺, 李庆华, 周飞, 陈柏锟, 蒋霄, AL MANSOURAhmed. 内埋炸药下超高韧性水泥基复合材料的抗爆性能[J]. 爆炸与冲击, 2021, 41(7): 075101. doi: 10.11883/bzycj-2021-0059
WU Ping, XU Shilang, LI Qinghua, ZHOU Fei, CHEN Baikun, JIANG Xiao, AL MANSOUR Ahmed. Anti-explosion tests and numerical simulations of ultra-high toughness cementitious composites subjected to blast by embedded explosives[J]. Explosion And Shock Waves, 2021, 41(7): 075101. doi: 10.11883/bzycj-2021-0059
Citation: WU Ping, XU Shilang, LI Qinghua, ZHOU Fei, CHEN Baikun, JIANG Xiao, AL MANSOUR Ahmed. Anti-explosion tests and numerical simulations of ultra-high toughness cementitious composites subjected to blast by embedded explosives[J]. Explosion And Shock Waves, 2021, 41(7): 075101. doi: 10.11883/bzycj-2021-0059

内埋炸药下超高韧性水泥基复合材料的抗爆性能

doi: 10.11883/bzycj-2021-0059
基金项目: 国家自然科学基金(51678522);国家自然科学基金优秀青年科学基金(51622811)
详细信息
    作者简介:

    吴 平(1993- ),男,博士研究生,21712038@zju.edu.cn

    通讯作者:

    徐世烺(1953- ),男,博士,教授,slxu@zju.edu.cn

  • 中图分类号: O383

Anti-explosion tests and numerical simulations of ultra-high toughness cementitious composites subjected to blast by embedded explosives

  • 摘要: 为研究超高韧性水泥基复合材料(ultra-high toughness cementitious composites, UHTCC)在内埋炸药爆炸下的抗爆性能和损伤破坏规律,对不同炸药埋深下的UHTCC和高强混凝土(high-strength concrete, HSC)进行了内埋炸药抗爆实验。得到了两种材料靶体的破坏状态,并利用接触爆炸的实验结果计算出了两种材料的抗爆性能参数。结果表明,在相同条件下,UHTCC抗爆性能优于高强混凝土。为了进一步探究UHTCC的抗压强度、抗拉强度以及拉伸韧性对靶体在内埋炸药下抗爆性能的影响,首先,采用改进的K&C模型对炸药埋深为40 mm的超高韧性水泥基复合材料靶体进行数值模拟,模拟结果与实验结果基本吻合,并根据数值模拟的结果得到了爆炸冲击波沿靶体径向衰减速度大于轴向衰减速度这一规律,验证了数值模型的有效性;然后,通过调整改进K&C模型中与抗压强度、抗拉强度以及拉伸韧性相关的参数,数值预测了不同抗压强度、抗拉强度以及拉伸韧性下UHTCC靶体的破坏状态,发现增强UHTCC的韧性可以有效防止靶体发生整体性破坏,增大UHTCC的抗拉强度可以减小靶体迎爆面的开坑直径,增大UHTCC的抗压强度对减小开坑直径效果不明显。
  • 图  1  抗压强度、弹性模量和泊松比测试

    Figure  1.  Measurements of compressive strength, elastic modulus and Poisson's ratio

    图  2  UHTCC直接拉伸测试

    Figure  2.  Uniaxial tensile test of UHTCC

    图  3  HSC直接拉伸测试

    Figure  3.  Uniaxial tensile test of HSC

    图  4  抗爆炸实验靶体

    Figure  4.  A target for anti-blast experiment

    图  5  UHTCC靶体爆炸破坏形态示意图

    Figure  5.  Schematic diagram of explosion damage of the UHTCC target

    图  6  UHTCC靶体在不同炸药埋深下的破坏情况

    Figure  6.  Damage of UHTCC targets under different explosive depths

    图  7  HSC靶体在不同炸药埋深下的破坏情况

    Figure  7.  Damage of HSC targets under different explosive depths

    图  8  抗爆实验有限元模型

    Figure  8.  The finite element model of anti-blast experiment

    图  9  改进的K&C模型参数和自动生成的K&C模型参数预测的UHTCC拉伸和压缩应力应变曲线

    Figure  9.  The tensile and compressive stress-strain curves of UHTCC predicted by parameters of modified K&C model and auto-generated parameters of K&C model

    图  10  不同侵蚀应变阈值下U-2的模拟结果

    Figure  10.  Simulation results of target U-2 under different erosion strain thresholds

    图  11  UHTCC靶体破坏模式

    Figure  11.  Damage modes of a UHTCC target

    图  12  UHTCC靶体压力时程曲线

    Figure  12.  Pressure-time curves of the UHTCC target

    图  13  抗压强度对UHTCC靶体破坏形态的影响

    Figure  13.  The effect of compressive strength on the damage pattern of UHTCC targets

    图  14  抗拉强度对UHTCC靶体破坏形态的影响

    Figure  14.  The effect of tensile strength on the damage pattern of UHTCC targets

    图  15  损伤参数b2对单轴拉伸应力应变曲线的影响

    Figure  15.  The effect of damage parameter b2 on uniaxial tensile stress-strain relationship

    图  16  拉伸韧性对UHTCC靶体破坏形态的影响

    Figure  16.  The effect of tensile toughness on the damage pattern of UHTCC targets

    表  1  PVA纤维的性能指标

    Table  1.   Performance index of PVA fiber

    纤维直径/μm长度/mm弹性模量/GPa极限应变/%抗拉强度/MPa密度/(g∙cm-3)
    PVA391140616001.3
    下载: 导出CSV

    表  2  UHTCC和HSC混凝土配合比

    Table  2.   Mix proportions of UHTCC and HSC

    材料含量/kg
    胶凝材料砂子减水剂石子PVA
    UHTCC1 4052812 039026
    HSC 45154401 270185 0
    下载: 导出CSV

    表  3  基本力学参数

    Table  3.   Basic mechanical parameters

    材料抗压强度/MPa抗拉强度/MPa弹性模量/GPa泊松比密度/(kg∙m−3
    UHTCC56.064.0816.750.2481900
    HSC57.324.2032.000.1902270
    下载: 导出CSV

    表  4  UHTCC靶体在不同炸药埋深下的爆炸实验结果

    Table  4.   Explosion experiment results of UHTCC targets under different depths of explosives

    材料编号h/mmH/mmD/mmNWmax/mmS/%V/%
    U-1 0 22.22 93.2000 4.6799.99
    U-2 40 69.80240.272.7 29.7697.19
    U-3 80104.70212.082.0 26.1196.06
    U-4120100.0046.38
    下载: 导出CSV

    表  5  HSC混凝土靶体在不同炸药埋深下的爆炸实验结果

    Table  5.   Explosion test results of HSC concrete targets under different depths of explosives

    材料编号h/mmH/mmD/mmS/%V/%爆炸后靶体的破坏形态
    C-1 020.78129 10.2298.71迎爆面形成一个较小的弹坑,无明显的裂缝产生
    C-240 61.6428.23迎爆面损坏严重,背爆面有5条主裂缝,较为明显的震塌现象
    C-380100.00 4.84靶体完全破碎成细小的骨料和一个残留的靶体
    C-4120100.00 2.98靶体完全被炸成骨料和一些混凝土块体
    下载: 导出CSV

    表  6  56 MPa 超高韧性水泥基复合材料的K&C模型参数

    Table  6.   K&C model parameters of 56 MPa ultra-high toughness cementitious composites

    状态方程参数
    εv1εv2εv3εv4εv5εv6εv7εv8εv9εv10
    0−0.0015−0.0043−0.0101−0.0305−0.0513−0.0726−0.0943−0.174−0.208
    p1p2p3p4p5p6p7p8p9p10
    0.01.417×1073.089×1074.960×1079.423×1071.421×1082.016×1083.085×1081.801×1092.755×109
    k1k2k3k4k5k6k7k8k9k10
    9.444×1099.444×1099.576×1091.006×10101.197×10101.388×10101.579×10101.724×10103.878×10104.72×1010
    本构模型参数
    ρ0ftvA0yA1yA2yA0A1A2A1f
    2 0004.08×1060.2414.44×1060.73495.470×10−919.9×1060.53631.443×10−90.5363
    A2fb1b2b3Ωλ1λ2λ3λ4λ5
    1.443×10−92.4−11.30.030.508×10−62.4×10−54×10−55.6×10−5
    λ6λ7λ8λ9λ10λ11λ12λ13η1η2
    7.2×10−58.8×10−53.2×10−45.2×10−45.7×10−41.01001×10100.00.85
    η3η4η5η6η7η8η9η10η11η12 η13
    0.970.991.00.990.970.50.10.00.00.00.0
    应变率参数
    $\dot \varepsilon $−100000−4786−1737−631−380−229−138−83−50
    rf9.979.659.288.618.117.496.775.965.12
    $\dot \varepsilon $−30−18−11−4.0−0.9−1×10−61×10−63050
    rf4.313.572.942.041.371.01.01.161.26
    $\dot \varepsilon $83138229380631104717384786100000
    rf1.411.611.862.132.372.562.702.852.94
    下载: 导出CSV
  • [1] 巫绪涛. 钢纤维高强混凝土动态力学性质的研究 [D]. 合肥: 中国科学技术大学, 2006. DOI: 10.7666/d.y919065.
    [2] 王涛, 余文力, 王少龙, 等. 国外钻地武器的现状与发展趋势 [J]. 导弹与航天运载技术, 2005(5): 51–56. DOI: 10.3969/j.issn.1004-7182.2005.05.011.

    WANG T, YU W L, WANG S L, et al. Present status and tendency of foreign earth-penetrating weapons [J]. Missiles and Space Vehicles, 2005(5): 51–56. DOI: 10.3969/j.issn.1004-7182.2005.05.011.
    [3] 邓国强, 杨秀敏. 钻地弹重复打击效应现场试验研究 [J]. 防护工程, 2012, 34(5): 1–5.

    DENG G Q, YANG X M. Experimental investigation into damage effects of repeated attacks of precision-guided penetration weapons [J]. Protective Engineering, 2012, 34(5): 1–5.
    [4] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. DOI: 10.1016/0029-5493(76)90015-7.
    [5] 王成, 付晓磊, 宁建国. 柱形装药爆炸破坏混凝土的数值模拟分析 [J]. 计算力学学报, 2007, 24(3): 318–322. DOI: 10.3969/j.issn.1007-4708.2007.03.012.

    WANG C, FU X L, NING J G. Numerical simulation of cylindrical charge damaging concrete medium [J]. Chinese Journal of Computational Mechanics, 2007, 24(3): 318–322. DOI: 10.3969/j.issn.1007-4708.2007.03.012.
    [6] LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [7] 李庆华, 赵昕, 徐世烺. 纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究 [J]. 工程力学, 2017, 34(2): 85–93. DOI: 10.6052/j.issn.1000-4750.2015.06.0477.

    LI Q H, ZHAO X, XU S L. Impact compression properties of Nano-SiO2 modified ultra high toughness cementitious composites using a split Hopkinson pressure bar [J]. Engineering Mechanics, 2017, 34(2): 85–93. DOI: 10.6052/j.issn.1000-4750.2015.06.0477.
    [8] LI H D, XU S L, LEUNG C K Y. Tensile and flexural properties of ultra high toughness cemontious composite [J]. Journal of Wuhan University of Technology-Materials Science Edition, 2009, 24(4): 677–683. DOI: 10.1007/s11595-009-4677-5.
    [9] LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites [J]. Materials and Structures, 1995, 28(10): 586–595. DOI: 10.1007/BF02473191.
    [10] LI V C, WANG S X, WU C. Tensile strain-hardening behavior of Polyvinyl Alcohol Engineered Cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2001, 98(6): 483–492.
    [11] LI V C, HASHIDA T. Engineering ductile fracture in brittle-matrix composites [J]. Materials Letter, 1993, 12(12): 898–901. DOI: 10.1007/BF00455611.
    [12] 徐世烺, 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究 [J]. 土木工程学报, 2009, 42(9): 32–41. DOI: 10.3321/j.issn:1000-131X.2009.09.005.

    XU S L, LI H D. Uniaxial tensile experiments of ultra-high toughness cementitious composite [J]. China Civil Engineering Journal, 2009, 42(9): 32–41. DOI: 10.3321/j.issn:1000-131X.2009.09.005.
    [13] 徐世烺, 蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能 [J]. 水利学报, 2009, 40(9): 1055–1063. DOI: 10.3321/j.issn:0559-9350.2009.09.005.

    XU S L, CAI X R. Experimental study on mechanical properties of ultra-high toughness fiber reinforced cementitious composite [J]. Journal of Hydraulic Engineering, 2009, 40(9): 1055–1063. DOI: 10.3321/j.issn:0559-9350.2009.09.005.
    [14] 徐世烺, 蔡新华, 李贺东. 超高韧性水泥基复合材料抗冻耐久性能试验研究 [J]. 土木工程学报, 2009, 42(9): 42–46. DOI: 10.3321/j.issn:1000-131X.2009.09.006.

    XU S L, CAI X H, LI H D. Experimental study of the durability properties of ultra-high toughness cementitious composites under freezing and thawing cycles [J]. China Civil Engineering Journal, 2009, 42(9): 42–46. DOI: 10.3321/j.issn:1000-131X.2009.09.006.
    [15] 刘问. 超高韧性水泥基复合材料冲击、断裂、疲劳及疲劳裂纹扩展性能的试验研究 [D]. 大连: 大连理工大学, 2011.
    [16] 李庆华, 舒程岚青, 徐世烺. 超高韧性水泥基复合材料的层裂试验研究 [J]. 工程力学, 2020, 37(4): 51–59. DOI: 10.6052/j.issn.1000-4750.2019.02.0060.

    LI Q H, SHU C L Q, XU S L. Experimental study on spall behavior of ultra-high toughness cementitious composites [J]. Engineering Mechanics, 2020, 37(4): 51–59. DOI: 10.6052/j.issn.1000-4750.2019.02.0060.
    [17] MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: 10.1061/(asce)0899-1561(2005)17: 2(143).
    [18] LI J, ZHANG Y X. Evaluation of constitutive models of hybrid-fibre engineered cementitious composites under dynamic loadings [J]. Construction and Building Materials, 2012, 30: 149–160. DOI: 10.1016/j.conbuildmat.2011.11.031.
    [19] 陈超. 超高韧性水泥基复合材料动态力学性能的数值模拟研究[D]. 杭州: 浙江大学, 2018.
    [20] 徐世烺, 李锐, 李庆华, 等. 超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟 [J]. 工程力学, 2020, 37(8): 123–133, 178. DOI: 10.6052/j.issn.1000-4750.2019.09.0548.

    XU S L, LI R, LI Q H, et al. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123–133, 178. DOI: 10.6052/j.issn.1000-4750.2019.09.0548.
    [21] ASTM. Standard test method for static modulus of elasticity and poisson’s ratio of concrete: C469 [S]. West Conshohocken, PA: Annual Book of ASTM Standards, 2011.
    [22] Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC) [M]. Tokyo: Japan Society of Civil Engineers, 2007.
    [23] 佘伟, 张云升, 孙伟, 等. 绿色超高性能纤维增强水泥基防护材料抗侵彻、抗爆炸试验研究 [J]. 岩石力学与工程学报, 2011, 30(S1): 2777–2783.

    SHE W, ZHANG Y S, SUN W, et al. Experimental research on anti-penetration and anti-explosion properties of green ultra-high performance fiber reinforced cement-based protective materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2777–2783.
    [24] 戎志丹, 孙伟, 张云升, 等. 超高性能水泥基复合材料的抗爆炸性能 [J]. 爆炸与冲击, 2010, 30(3): 232–238. DOI: 10.11883/1001-1455(2010)03-0232-07.

    RONG Z D, SUN W, ZHANG Y S, et al. Characteristics of ultra-high performance cementitious composites under explosion [J]. Explosion and Shock Waves, 2010, 30(3): 232–238. DOI: 10.11883/1001-1455(2010)03-0232-07.
    [25] 程扬帆. 基于储氢材料的高能乳化炸药爆轰机理和爆炸性能研究[D]. 合肥: 中国科学技术大学, 2014.
    [26] 宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010: 145−155.
    [27] 徐世烺, 吴平, 李庆华, 等. 超高韧性水泥基复合材料K&C模型参数的确定 [J/OL]. 建筑结构学报, 2021: 1−16[2021-03-09]. https://kns.cnki.net/kcms/detail/detail.aspx?doi= 10.14006/j.jzjgxb.2020.0587. DOI: 10.14006/j.jzjgxb.2020.0587.

    XU S L, WU P, LI Q H, et al. Determination of K&C model parameters for ultra-high toughness cementitious composites [J/OL]. Journal of Building Structures, 2021: 1−16[2021-03-09]. https://kns.cnki.net/kcms/detail/detail.aspx?doi= 10.14006/j.jzjgxb.2020.0587. DOI: 10.14006/j.jzjgxb.2020.0587.
    [28] Livermore Software Technology Corporation. LS-DYNA Keyword User’s manual version 970 [M]. Livermore: Livermore Software Technology Corporation, 2003.
    [29] WANG J. Simulation of landmine explosion using LS-DYNA3D software: benchmark work of simulation of explosion in soil and air: DSTO-TR-1168 [R]. Australia: Weapons Systems Division Aeronautical and Maritime Research Laboratory, 2001.
    [30] FENG W H, CHEN B Y, YANG F, et al. Numerical study on blast responses of rubberized concrete slabs using the Karagozian and Case concrete model [J]. Journal of Building Engineering, 2021, 33: 101610. DOI: 10.1016/j.jobe.2020.101610.
    [31] LI J, WU C Q, HAO H. An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads [J]. Materials & Design, 2015, 82: 64–76. DOI: 10.1016/j.matdes.2015.05.045.
    [32] HONG J, FANG Q, CHEN L, et al. Numerical predictions of concrete slabs under contact explosion by modified K& C material model [J]. Construction and Building Materials, 2017, 155: 1013–1024. DOI: 10.1016/j.conbuildmat.2017.08.060.
    [33] 赵凯, 王肖钧, 卞梁, 等. 混凝土介质中不同药形装药爆炸波传播特性的数值模拟 [J]. 中国科学技术大学学报, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.

    ZHAO K, WANG X J, BIAN L, et al. Numerical study on the propagation and damage behavior of the blasting wave with differently shaped explosives in concrete [J]. Journal of University of Science and Technology of China, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  238
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-04-10
  • 网络出版日期:  2021-06-21
  • 刊出日期:  2021-07-05

目录

    /

    返回文章
    返回