• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

超高性能混凝土临空板接触爆炸破坏效应实验研究

魏久淇 李磊 王世合 张春晓 曹少华 高杰

魏久淇, 李磊, 王世合, 张春晓, 曹少华, 高杰. 超高性能混凝土临空板接触爆炸破坏效应实验研究[J]. 爆炸与冲击, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174
引用本文: 魏久淇, 李磊, 王世合, 张春晓, 曹少华, 高杰. 超高性能混凝土临空板接触爆炸破坏效应实验研究[J]. 爆炸与冲击, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174
WEI Jiuqi, LI Lei, WANG Shihe, ZHANG Chunxiao, CAO Shaohua, GAO Jie. Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion[J]. Explosion And Shock Waves, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174
Citation: WEI Jiuqi, LI Lei, WANG Shihe, ZHANG Chunxiao, CAO Shaohua, GAO Jie. Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion[J]. Explosion And Shock Waves, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174

超高性能混凝土临空板接触爆炸破坏效应实验研究

doi: 10.11883/bzycj-2021-0174
基金项目: 国家自然科学基金(52078361)
详细信息
    作者简介:

    魏久淇(1990- ),男,硕士,工程师,weijiuqi61489@163.com

    通讯作者:

    李 磊(1980- ),男,博士,助理研究员,lileikf@163.com

  • 中图分类号: O383.2;TU928

Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion

  • 摘要: 为了研究超高性能混凝土(ultra-high performance concrete, UHPC)的抗接触爆炸性能,开展了C120、C150和C180等3种强度等级共24块UHPC临空板的接触爆炸实验,定量分析了不同药量时典型配筋与不配筋靶板的局部破坏特征,得到了UHPC的爆炸临界震塌系数、压缩系数和成坑系数。结果表明:相同药量下,UHPC板的正面破坏程度随材料强度的提升而减轻;强度越高,爆炸成坑系数和压缩系数越小,抗爆性能越好;配筋率较低时,钢筋对UHPC板正面爆坑尺寸及背面震塌破坏程度影响较小,但对板的整体变形起到了一定的减轻作用,能够减小板底的剩余挠度和裂缝宽度;C150靶板的爆炸临界震塌系数最小,不大于0.251 m/kg1/3,C120和C180靶板的爆炸临界震塌系数相近,不大于0.285 m/kg1/3。在设计、使用纤维含量较高的大尺寸UHPC构件时,应特别关注由纤维分布方向性引起的材料各向异性和结构力学性能的变化。
  • 图  1  实验装置

    Figure  1.  The experimental setup

    图  2  UHPC板的典型局部破坏

    Figure  2.  Typical local damage of the UHPC slabs

    图  3  压缩系数的拟合结果

    Figure  3.  Fitting results of the compressibility coefficients

    图  4  成坑系数的拟合结果

    Figure  4.  Fitting results of the crater coefficients

    表  1  UHPC板的参数

    Table  1.   Parameters of the UHPC slabs

    材料抗压强度/MPa抗拉强度/MPa数量
    C120125.27.125
    PC120125.27.125
    C150157.78.185
    PC150157.78.185
    C180182.89.344
    下载: 导出CSV

    表  2  试件的破坏状况

    Table  2.   Damage states of the slabs

    试件药量/kg正面 背面
    直径/m深度/m 剩余挠度/mm震塌坑尺寸/mm裂缝分布
    C120-11.60.3200.088 1612条,最宽3.5 mm
    C120-21.80.3150.092 2814条,最宽9.9 mm
    C120-31.90.3400.094 90×140深1514条
    C120-42.00.3300.095350×250深6017条
    C120-52.40.3750.099620×780深10518条
    PC120-11.60.3280.092 1011条,最宽1.9 mm
    PC120-22.00.3600.0982813条,最宽2.4 mm
    PC120-32.10.3550.10040×50深3015条
    PC120-42.20.3500.09970×105深3516条
    PC120-52.40.3600.102100×200深6016条
    C150-11.60.2850.076 86条,最宽2.0 mm
    C150-22.00.3050.0803011条,最宽3.6 mm
    C150-32.40.3600.0844913条,最宽7.5 mm
    C150-42.60.3550.088380×630深7013条
    C150-52.80.3450.092690×900深13015条
    PC150-11.60.2730.079 98条,最宽2.0 mm
    PC150-22.00.3200.0801511条,最宽2.2 mm
    PC150-32.40.3430.0832214条,最宽3.8 mm
    PC150-42.70.3600.088230×470深5514条
    PC150-53.00.3700.092370×460深6514条
    C180-11.80.2730.070 2210条,最宽3.54 mm
    C180-22.00.2850.075150×145深5012条
    C180-32.40.3050.078650×735深9513条
    C180-42.80.3400.086705×895深11015条
    下载: 导出CSV

    表  3  靶板正面的爆坑参数

    Table  3.   The front face anti-explosion parameters of the slabs

    材料k/(m·kg−1/3)Ka/(m·kg−1/3)
    C40钢筋混凝土[21-22]0.4330.13
    C100钢纤维混凝土[21-22]0.3330.12
    C120超高性能混凝土0.265~0.2690.113~0.114
    C150超高性能混凝土0.2430.097~0.098
    C180超高性能混凝土0.2220.094
    下载: 导出CSV

    表  4  UHPC靶板的临界震塌系数

    Table  4.   Critical collapse factors of the UHPC slabs

    材料Kz0/(m·kg−1/3)
    C1200.278~0.285
    PC1200.267~0.272
    C1500.243~0.251
    PC1500.238~0.251
    C1800.272~0.285
    下载: 导出CSV
  • [1] DE LARRARD F, SEDRAN T. Optimization of ultra-high-performance concrete by the use of a packing model [J]. Cement and Concrete Research, 1994, 24(6): 997–1009. DOI: 10.1016/0008-8846(94)90022-1.
    [2] SOBUZ H R, VISINTIN P, MOHAMED ALI M S, et al. Manufacturing ultra-high performance concrete utilising conventional materials and production methods [J]. Construction and Building Materials, 2016, 111: 251–261. DOI: 10.1016/j.conbuildmat.2016.02.102.
    [3] YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC) [J]. Construction and Building Materials, 2009, 23(6): 2291–2298. DOI: 10.1016/j.conbuildmat.2008.11.012.
    [4] CAMILETTI J, SOLIMAN A M, NEHDI M L. Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete [J]. Materials and Structures, 2013, 46(6): 881–898. DOI: 10.1617/s11527-012-9940-0.
    [5] WANG D H, SHI C J, WU Z M, et al. A review on ultra high performance concrete: part Ⅱ. hydration, microstructure and properties [J]. Construction and Building Materials, 2015, 96: 368–377. DOI: 10.1016/j.conbuildmat.2015.08.095.
    [6] SHI C J, WANG D H, WU L M, et al. The hydration and microstructure of ultra high-strength concrete with cement-silica fume-slag binder [J]. Cement and Concrete Composites, 2015, 61: 44–52. DOI: 10.1016/j.cemconcomp.2015.04.013.
    [7] WILLE K, NAAMAN A E, EL-TAWIL S, et al. Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing [J]. Materials and Structures, 2012, 45(3): 309–324. DOI: 10.1617/s11527-011-9767-0.
    [8] YAZICI H, YARDIMCI M Y, AYDIN S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes [J]. Construction and Building Materials, 2009, 23(3): 1223–1231. DOI: 10.1016/j.conbuildmat.2008.08.003.
    [9] ABBAS S, SOLIMAN A M, NEHDI M L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages [J]. Construction and Building Materials, 2015, 75: 429–441. DOI: 10.1016/j.conbuildmat.2014.11.017.
    [10] KHOSRAVANI M R, WAGNER P, FRÖHLICH D, et al. Dynamic fracture investigations of ultra-high performance concrete by spalling tests [J]. Engineering Structures, 2019, 201: 109844. DOI: 10.1016/j.engstruct.2019.109844.
    [11] GUO Y B, GAO G F, JING L, et al. Quasi-static and dynamic splitting of high-strength concretes-tensile stress-strain response and effects of strain rate [J]. International Journal of Impact Engineering, 2019, 125: 188–211. DOI: 10.1016/j.ijimpeng.2018.11.012.
    [12] 戎志丹, 孙伟. 粗集料对超高性能水泥基材料动态力学性能的影响 [J]. 爆炸与冲击, 2009, 29(4): 361–366. DOI: 10.11883/1001-1455(2009)04-0361-06.

    RONG Z D, SUN W. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites [J]. Explosion and Shock Waves, 2009, 29(4): 361–366. DOI: 10.11883/1001-1455(2009)04-0361-06.
    [13] 张想柏, 杨秀敏, 陈肇元, 等. 接触爆炸钢筋混凝土板的震塌效应 [J]. 清华大学学报(自然科学版), 2006, 46(6): 765–768. DOI: 10.3321/j.issn:1000-0054.2006.06.004.

    ZHANG X B, YANG X M, CHEN Z Y, et al. Explosion spalling of reinforced concrete slabs with contact detonations [J]. Journal of Tsinghua University (Science and Technology), 2006, 46(6): 765–768. DOI: 10.3321/j.issn:1000-0054.2006.06.004.
    [14] 王明洋, 张胜民, 国胜兵. 接触爆炸作用下钢板钢纤维混凝土遮弹层设计方法(Ⅰ) [J]. 爆炸与冲击, 2002, 22(1): 40–45.

    WANG M Y, ZHANG S M, GUO S B. Design method of steel and steel-fiber concrete shelter plate under contact detonation [J]. Explosion and Shock Waves, 2002, 22(1): 40–45.
    [15] 胡金生, 杨秀敏, 周早生, 等. 接触爆炸对底部有土垫层纤维混凝土板破坏效应试验研究 [J]. 爆炸与冲击, 2005, 25(2): 157–162. DOI: 10.11883/1001-1455(2005)02-0157-06.

    HU J S, YANG X M, ZHOU Z S, et al. Experimental investigation on contact explosion damage effect to fiber reinforced concrete slab with soil bedding [J]. Explosion and Shock Waves, 2005, 25(2): 157–162. DOI: 10.11883/1001-1455(2005)02-0157-06.
    [16] 岳松林, 王明洋, 张宁, 等. 混凝土板在接触爆炸作用下的震塌和贯穿临界厚度计算方法 [J]. 爆炸与冲击, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.

    YUE S L, WANG M Y, ZHANG N, et al. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion [J]. Explosion and Shock Waves, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.
    [17] LI J, WU C Q, HAO H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007.
    [18] 葛涛, 潘越峰, 谭可可, 等. 活性粉末混凝土抗冲击性能研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.

    GE T, PAN Y F, TAN K K, et al. Study on resistance of reactive powder concrete to impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.
    [19] 戎志丹, 孙伟, 张云升, 等. 超高性能钢纤维混凝土抗二次接触爆炸性能研究 [J]. 华北水利水电大学学报, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.

    RONG Z D, SUN W, ZHANG Y S, et al. Study on the characteristics of ultra-high performance steel fiber reinforced concrete under the second explosion [J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.
    [20] WU H, HU F, FANG Q, et al. A comparative study for the impact performance of shaped charge JET on UHPC targets [J]. Defence Technology, 2019, 15(4): 506–518. DOI: 10.1016/j.dt.2019.04.005.
    [21] 王年桥. 防护结构计算原理与设计 [M]. 2版. 南京: 解放军理工大学工程兵工程学院, 2002.
    [22] 张云升, 张文华, 刘建忠. 超高性能水泥基复合材料 [M]. 北京: 科学出版社, 2014.
    [23] 郑全平, 牛小玲, 汪剑辉, 等. 不同钢纤维掺量C30 RC板爆炸震塌试验研究 [J]. 防护工程, 2013, 35(1): 16–20.

    ZHENG Q P, NIU X L, WANG J H, et al. Experimental investigation into explosion spalling of C30 RC plates with different steel fiber content [J]. Protective Engineering, 2013, 35(1): 16–20.
    [24] 郑全平, 钱七虎, 周早生, 等. 钢筋混凝土震塌厚度计算公式对比研究 [J]. 工程力学, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009.

    ZHENG Q P, QIAN Q H, ZHOU Z S, et al. Comparative analysis of scabbing thickness estimation of reinforced concrete structures [J]. Engineering Mechanics, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  123
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-09-15
  • 网络出版日期:  2022-03-10
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回