KH2PO4/SiO2复合粉体抑制铝粉爆燃效果及机理分析

颜轲 孟祥豹 潘智超 王政 张延松

颜轲, 孟祥豹, 潘智超, 王政, 张延松. KH2PO4/SiO2复合粉体抑制铝粉爆燃效果及机理分析[J]. 爆炸与冲击, 2022, 42(6): 062101. doi: 10.11883/bzycj-2021-0190
引用本文: 颜轲, 孟祥豹, 潘智超, 王政, 张延松. KH2PO4/SiO2复合粉体抑制铝粉爆燃效果及机理分析[J]. 爆炸与冲击, 2022, 42(6): 062101. doi: 10.11883/bzycj-2021-0190
YAN Ke, MENG Xiangbao, PAN Zhichao, WANG Zheng, ZHANG Yansong. Effect and mechanism of KH2PO4/SiO2 composite powder in inhibiting aluminum dust deflagration[J]. Explosion And Shock Waves, 2022, 42(6): 062101. doi: 10.11883/bzycj-2021-0190
Citation: YAN Ke, MENG Xiangbao, PAN Zhichao, WANG Zheng, ZHANG Yansong. Effect and mechanism of KH2PO4/SiO2 composite powder in inhibiting aluminum dust deflagration[J]. Explosion And Shock Waves, 2022, 42(6): 062101. doi: 10.11883/bzycj-2021-0190

KH2PO4/SiO2复合粉体抑制铝粉爆燃效果及机理分析

doi: 10.11883/bzycj-2021-0190
基金项目: 国家自然科学基金(52074174)
详细信息
    作者简介:

    颜 轲(1997-  ),男,硕士,yanke19970325@163.com

    通讯作者:

    孟祥豹(1980-  ),男,博士,副教授,mxb@sdust.edu.cn

  • 中图分类号: O381

Effect and mechanism of KH2PO4/SiO2 composite powder in inhibiting aluminum dust deflagration

  • 摘要: 为研究KH2PO4/SiO2复合粉体抑爆剂对铝粉爆燃的抑制作用,采用球磨机将KH2PO4和SiO2混合研磨制备出新型的KH2PO4/SiO2复合粉体抑爆剂。在哈特曼管实验装置上,开展爆燃火焰传播抑制实验,结果表明:随着KH2PO4/SiO2复合粉体抑爆剂含量的增加,爆燃火焰传播长度和速度逐渐减小,当添加质量比10∶6的KH2PO4/SiO2复合粉体抑爆剂时,可实现铝粉爆燃火焰传播的抑制。在20 L球形爆炸装置上,开展复合粉体抑爆剂抑制铝粉爆炸压力测试实验,结果表明:随着KH2PO4/SiO2复合粉体抑爆剂含量的增加,铝粉爆炸最大爆炸压力pmax和最大爆炸压力上升速率(dp/dt)max逐渐减小,当添加质量比10∶9的KH2PO4/SiO2复合粉体抑爆剂时,可实现铝粉爆燃的完全抑制。通过KH2PO4粉体、SiO2粉体与复合粉体抑爆剂对比可知,复合粉体抑爆剂对铝粉火焰传播和爆炸压力的抑制效果都优于单体粉体抑爆剂。通过对铝粉在空气中燃烧的热分析研究,从化学和物理两个方面分析了KH2PO4/SiO2复合粉体抑爆剂对铝粉爆燃的抑制机理。
  • 图  1  哈特曼管实验装置

    Figure  1.  The Hartmann tube experimental device

    图  2  20 L球形爆炸实验装置

    Figure  2.  The 20-L spherical explosion experimental device

    图  3  铝粉颗粒的粒度分布

    Figure  3.  Particle size distributions of the solid aluminum powder

    图  4  铝粉的SEM和EDS图像

    Figure  4.  SEM and EDS images of the aluminum powder

    图  5  不同质量比KH2PO4/SiO2复合粉末的SEM图像

    Figure  5.  SEM images of the KH2PO4/SiO2 composite powders with different mass ratios

    图  6  KH2PO4/SiO2复合粉体的EDS能谱

    Figure  6.  EDS spectra of the KH2PO4/SiO2 composite powder

    图  7  升温速率为10 ℃/min时铝粉和KH2PO4粉末的热重分析

    Figure  7.  Thermogravimetric analysis of the aluminum powder and KH2PO4 powder at the heating rate of 10 °C/min

    图  8  铝粉爆燃的火焰传播过程

    Figure  8.  Propagation process of the aluminum powder deflagration flame

    图  9  纯铝粉和不同质量比复合粉体抑爆剂抑制铝粉爆燃的火焰传播过程

    Figure  9.  The propagation process of the aluminum powder deflagration flame with or without explosion inhibitors

    图  10  铝粉爆燃火焰传播的峰值速度和平均速度

    Figure  10.  Peak velocities and average velocities of aluminum powder deflagration flame propagations

    图  11  铝粉爆炸压力典型曲线

    Figure  11.  A typical explosion pressure curve of aluminum powder

    图  12  添加不同抑爆剂对铝粉爆炸压力曲线的影响

    Figure  12.  Explosion pressure curves of the aluminum powders with different explosion inhibitors

    图  13  添加不同抑爆剂对铝粉爆炸最大爆炸压力和最大升压速率压力的影响

    Figure  13.  Maximum explosion pressures and maximum pressure rise rates of the aluminum powders with different explosion inhibitors

    图  14  复合粉体抑爆剂抑制铝粉爆燃反应的机理

    Figure  14.  The mechanism of composite powder explosion inhibitor inhibiting aluminum powder deflagration reaction

  • [1] MARMO L, CAVALLERO D, DEBERNARDI M L. Aluminium dust explosion risk analysis in metal workings [J]. Journal of Loss Prevention in the Process Industries, 2004, 17(6): 449–465. DOI: 10.1016/j.jlp.2004.07.004.
    [2] JOSEPH G. Combustible dusts: a serious industrial hazard [J]. Journal of Hazardous Materials, 2007, 142(3): 589–591. DOI: 10.1016/j.jhazmat.2006.06.127.
    [3] 文虎, 杨玉峰, 王秋红, 等. 矩形管道中微米级铝粉爆炸实验 [J]. 爆炸与冲击, 2018, 38(5): 993–998. DOI: 10.11883/bzycj-2016-0003.

    WEN H, YANG Y F, WANG Q H, et al. Experimental study on micron-sized aluminum dust explosion in a rectangular pipe [J]. Explosion and Shock Waves, 2018, 38(5): 993–998. DOI: 10.11883/bzycj-2016-0003.
    [4] 杜宇婷, 司荣军, 薛少谦. 铝粉爆炸无火焰泄压技术及装备研究 [J]. 中国安全生产科学技术, 2020, 16(4): 132–136. DOI: 10.11731/j.issn.1673-193x.2020.04.021.

    DU Y T, SI R J, XUE S Q. Research on flameless venting technology and device for aluminum dust explosion [J]. Journal of Safety Science and Technology, 2020, 16(4): 132–136. DOI: 10.11731/j.issn.1673-193x.2020.04.021.
    [5] CHEN H Y, ZHANG Y S, LIU H, et al. Cause analysis and safety evaluation of aluminum powder explosion on the basis of catastrophe theory [J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 19–24. DOI: 10.1016/j.jlp.2018.05.017.
    [6] 朱小超, 郑立刚, 于水军, 等. 阻塞比对竖直管道中铝粉爆炸特性的影响研究 [J]. 爆炸与冲击, 2019, 39(10): 105402. DOI: 10.11883/bzycj-2019-0006.

    ZHU X C, ZHENG L G, YU S J, et al. Effect of blocking ratio on aluminum powder explosion’s characteristics in vertical duct [J]. Explosion and Shock Waves, 2019, 39(10): 105402. DOI: 10.11883/bzycj-2019-0006.
    [7] NI X M, KUANG K Q, YANG D L, et al. A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core-shell structure [J]. Fire Safety Journal, 2009, 44(7): 968–975. DOI: 10.1016/j.firesaf.2009.06.004.
    [8] 左前明, 程卫民, 邹冠贵, 等. 协同增效原理在煤尘抑爆剂中的应用实验 [J]. 重庆大学学报, 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582x.2012.01.020.

    ZUO Q M, CHENG W M, ZOU G G, et al. Applied experiments on coal dust inhibitor based on the theory of synergistic effect [J]. Journal of Chongqing University, 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582x.2012.01.020.
    [9] KRASNYANSKY M. Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 729–735. DOI: 10.1016/j.jlp.2006.05.004.
    [10] WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure [J]. Journal of Hazardous Materials, 2017, 335: 84–91. DOI: 10.1016/j.jhazmat.2017.04.031.
    [11] YAN K, MENG X B. An investigation on the aluminum dustexplosion suppression efficiency and mechanism of a NaHCO3/DE composite powder [J]. Advanced Powder Technology, 2020, 31(8): 3246–3255. DOI: 10.1016/j.apt.2020.06.014.
    [12] LUO Z M, WANG T, TIAN Z H, et al. Experimental study on the suppression of gas explosion using the gas-solid suppressant of CO2/ABC powder [J]. Journal of Loss Prevention in the Process Industries, 2014, 30: 17–23. DOI: 10.1016/j.jlp.2014.04.006.
    [13] LI Q Z, LIN B Q, LI W X, et al. Explosion characteristics of nano-aluminum powder-air mixtures in 20 L spherical vessels [J]. Powder Technology, 2011, 212(2): 303–309. DOI: 10.1016/j.powtec.2011.04.038.
    [14] XIAO Q, LIU B, MA X S, et al. An experimental investigation on the ignition sensitivity and flame propagation behavior of mixed oil shale-coal dust [J]. Combustion Science and Technology, 2021, 193(8): 1359–1377. DOI: 10.1080/00102202.2019.1695606.
    [15] CHEN Z H, FAN B C, JIANG X H. Suppression effects of powder suppressants on the explosions of oxyhydrogen gas [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 648–655. DOI: 10.1016/j.jlp.2006.03.006.
    [16] 王秋红, 申中一, 王清峰. 抑制铝粉尘云爆炸的粉体材料效能对比分析 [J]. 中南大学学报(自然科学版), 2020, 51(4): 922–930. DOI: 10.11817/j.issn.1672-7207.2020.04.007.

    WANG Q H, SHEN Z Y, WANG Q F. Comparative analysis of the effectiveness of powder materials on suppressing aluminum dust cloud explosion [J]. Journal of Central South University (Science and Technology), 2020, 51(4): 922–930. DOI: 10.11817/j.issn.1672-7207.2020.04.007.
    [17] WANG Z, MENG X B, YAN K, et al. Inhibition effects of Al(OH)3 and Mg(OH)2 on Al-Mg alloy dust explosion [J]. Journal of Loss Prevention in the Process Industries, 2020, 66: 104206. DOI: 10.1016/j.jlp.2020.104206.
    [18] YU X Z, YU J L, ZHANG X Y, et al. Combustion behaviors and residues characteristics in hydrogen/aluminum dust hybrid explosions [J]. Process Safety and Environmental Protection, 2020, 134: 343–352. DOI: 10.1016/j.psep.2019.12.023.
    [19] 陈曦, 陈先锋, 张洪铭, 等. 惰化剂粒径对铝粉火焰传播特性影响的实验研究 [J]. 爆炸与冲击, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.

    CHEN X, CHEN X F, ZHANG H M, et al. Effects of inerting agent with different particle sizes on the flame propagation of aluminum dust [J]. Explosion and Shock Waves, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.
    [20] 国家技术监督局. 粉尘云最小点火能测试方法 双层振动筛落法(积分计算能量): GB/T 15929–1995 [S]. 北京: 中国标准出版社, 1995.
    [21] 国家技术监督局. 粉尘云最小着火能量测定方法: GB/T 16428–1996 [S]. 北京: 中国标准出版社, 1996.
    [22] WANG J F, ZHANG Y S, SU H F, et al. Explosion characteristics and flame propagation behavior of mixed dust cloud of coal dust and oil shale dust [J]. Energies, 2019, 12(20): 3807. DOI: 10.3390/en12203807.
    [23] WANG J F, MENG X B, MA X S, et al. Experimental study on whether and how particle size affects the flame propagation and explosibility of oil shale dust [J]. Process Safety Progress, 2019, 38(3): e12075. DOI: 10.1002/prs.12075.
    [24] 国家市场监督管理总局, 国家标准化管理委员会. 粉尘云爆炸下限浓度测定方法: GB/T 16425–2018 [S]. 北京: 中国标准出版社, 2018.
    [25] 国家技术监督局. 粉尘云最大爆炸压力和最大压力上升速率测定方法: GB/T 16426–1996 [S]. 北京: 中国标准出版社, 1997.
    [26] 林柏泉, 梅晓凝, 王可, 等. 基于20L球形爆炸装置的微米级铝粉爆炸特性实验 [J]. 北京理工大学学报, 2016, 36(7): 661–667. DOI: 10.15918/j.tbit1001-0645.2016.07.001.

    LIN B Q, MEI X N, WANG K, et al. Explosion characteristics of micro-aluminum powders in 20 L spherical vessels [J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 661–667. DOI: 10.15918/j.tbit1001-0645.2016.07.001.
    [27] 陈晓坤, 张自军, 王秋红, 等. 20 L近球形容器中微米级铝粉的爆炸特性 [J]. 爆炸与冲击, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.

    CHEN X K, ZHANG Z J, WANG Q H, et al. Explosion characteristics of micro-sized aluminum dust in 20 L spherical vessel [J]. Explosion and Shock Waves, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.
  • 加载中
图(14)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  128
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 修回日期:  2021-07-20
  • 网络出版日期:  2022-05-17
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回