近场水下爆炸气泡脉动及水射流的实验与数值模拟研究

文彦博 胡亮亮 秦健 张延泽 王金相 刘亮涛 黄瑞源

文彦博, 胡亮亮, 秦健, 张延泽, 王金相, 刘亮涛, 黄瑞源. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J]. 爆炸与冲击, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206
引用本文: 文彦博, 胡亮亮, 秦健, 张延泽, 王金相, 刘亮涛, 黄瑞源. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J]. 爆炸与冲击, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206
WEN Yanbo, HU Liangliang, QIN Jian, ZHANG Yanze, WANG Jinxiang, LIU Liangtao, HUANG Ruiyuan. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion And Shock Waves, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206
Citation: WEN Yanbo, HU Liangliang, QIN Jian, ZHANG Yanze, WANG Jinxiang, LIU Liangtao, HUANG Ruiyuan. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion And Shock Waves, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206

近场水下爆炸气泡脉动及水射流的实验与数值模拟研究

doi: 10.11883/bzycj-2021-0206
基金项目: 国家自然科学基金(12172178);装备预研基金(614260404021801);中国空气动力研究与发展中心超高速碰撞研究中心开放基金(20200203)
详细信息
    作者简介:

    文彦博(1998-  ),男,硕士研究生,ybwen@njust.edu.cn

    通讯作者:

    黄瑞源(1984-  ),男,博士,副研究员,huangruiyuan1984@163.com

  • 中图分类号: O382.1

Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion

  • 摘要: 海上作战时,近场水下爆炸形成的水射流能造成水面舰船结构的严重局部毁伤。为了研究近场爆炸时舰船底部水射流的形成机理及规律,开展了TNT当量2.5 g的炸药在固支方板底部不同爆距下起爆的水下爆炸实验。结果表明,气泡坍塌形成水射流的过程随着爆距的增加由吸附式向非吸附式转化。接着,基于ABAQUS软件采用CEL方法开展了系列数值模拟,结果表明:爆距在0.821~0.867倍最大气泡半径时,存在吸附式射流向非吸附式射流转化的临界点;固支方板加快了气泡坍塌的进程,炸药与钢板间的距离越小则射流形成的时间越早;射流形成过程中最大速度和射流击中钢板时速度均随着爆距的增大先增大后减小,并在临界点附近达到最大值,射流速度最大可达621 m/s,射流击中钢板时速度最大可达269 m/s。最后,给出了射流开始形成时间、射流最大速度、射流最大速度出现时间、射流击中钢板速度和射流击中钢板时间与距离参数的函数关系式。
  • 图  1  实验系统

    Figure  1.  The experimental system

    图  2  固支方板

    Figure  2.  A clamped square plate

    图  3  实验1的压力曲线

    Figure  3.  The pressure curve in experiment 1

    图  4  γ=0.684时气泡演变过程的实验图像

    Figure  4.  Experimental images of bubble evolution process when γ=0.684

    图  5  γ=0.798时气泡演变过程的实验图像

    Figure  5.  Experimental images of bubble evolution process when γ=0.798

    图  6  γ=0.913时气泡演变过程的实验图像

    Figure  6.  Experimental images of bubble evolution process when γ=0.913

    图  7  γ=1.282时气泡演变过程的实验图像

    Figure  7.  Experimental images of bubble evolution process when γ=1.282

    图  8  数值模拟模型

    Figure  8.  Schematic diagram of numerical simulation model

    图  9  γ=0.684时气泡演变过程的实验和数值模拟图像

    Figure  9.  Experimental and numerical simulation images of bubble evolution process when γ=0.684

    图  10  γ=0.798时气泡演变过程的实验和数值模拟图像

    Figure  10.  Experimental and numerical simulation images of bubble evolution process when γ=0.798

    图  11  γ=0.913时气泡演变过程的实验和数值模拟图像

    Figure  11.  Experimental and numerical simulation images of bubble evolution process when γ=0.913

    图  12  γ=1.282时气泡演变过程的实验和数值模拟图像

    Figure  12.  Experimental and numerical simulation images of bubble evolution process when γ=1.282

    图  13  气泡上、下表面

    Figure  13.  The upper and lower surfaces of a bubble

    图  14  气泡上、下表面位置曲线

    Figure  14.  The positions of the upper and lower surfaces of a bubble

    图  15  γ=0.821时气泡演变过程的数值模拟图像

    Figure  15.  Numerical simulation images of bubble evolution process when γ=0.821

    图  16  γ=0.867时气泡演变过程的数值模拟图像

    Figure  16.  Numerical simulation images of bubble evolution process when γ=0.867

    图  17  在不同距离参数下射流顶部节点的速度曲线

    Figure  17.  Velocity curves of jet top nodes under different burst distances

    18  在不同距离参数下射流速度演化过程的数值模拟图像

    18.  Numerical simulation images of jet velocity evolution processes at different burst distances

    图  19  射流形成时间与距离参数的关系

    Figure  19.  Relationship between jet formation time and distance parameter

    图  20  不同距离参数下最大射流速度和最大射流速度时间

    Figure  20.  Maximum jet velocities and maximum jet velocity times at different distance parameters

    图  21  不同距离参数下射流击中钢板的速度和时间

    Figure  21.  Velocities and times of jet hitting steel plate at different distance parameters

    表  1  冲击波峰值压力的实验结果和经验公式结果

    Table  1.   Experimental results and empirical formula results of shock wave peak pressures

    实验γpm1/MPaδp/%
    实验经验公式
    10.6847.648.196.72
    20.6847.498.198.55
    30.7987.728.205.85
    40.7987.798.205.00
    50.9137.818.214.87
    60.9137.778.215.36
    70.9137.918.213.65
    81.2827.548.157.49
    91.2827.618.156.63
    101.2827.588.156.99
    下载: 导出CSV

    表  2  气泡脉动周期和气泡最大半径的实验结果和经验公式结果

    Table  2.   Experimental results and empirical formula results of bubble pulsation periods and bubble maximum radii

    实验γT/msδT/%Rm/cmδR/%
    实验经验公式实验经验公式
    10.68437.8141.528.9421.5021.942.01
    20.68438.4441.527.4221.5021.942.01
    30.79839.6941.434.2021.6021.921.46
    40.79839.3741.434.9721.4021.922.37
    50.91339.8141.353.7221.5021.901.83
    60.91339.7541.353.8721.6021.901.37
    70.91339.6941.354.0121.6021.901.37
    81.28238.7541.085.6721.0021.853.89
    91.28239.7541.083.2421.1021.853.43
    101.28239.5641.083.7021.0021.853.89
    下载: 导出CSV

    表  3  数值模拟的距离参数

    Table  3.   Distance parameters in numerical simulation

    数值模拟 d/cm γ
    1 12.0 0.546
    2 15.0 0.684
    3 16.0 0.730
    4 17.5 0.798
    5 18.0 0.821
    6 19.0 0.867
    7 20.0 0.913
    8 21.0 0.959
    9 25.0 1.143
    10 28.0 1.282
    下载: 导出CSV
  • [1] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.

    JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
    [2] 罗海波, 许凌云, 惠斌, 等. 基于深度学习的目标跟踪方法研究现状与展望 [J]. 红外与激光工程, 2017, 46(5): 0502002. DOI: 10.3788/IRLA201746.0502002.

    LUO H B, XU L Y, HUI B. Status and prospect of target tracking based on deep learning [J]. Infrared and Laser Engineering, 2017, 46(5): 0502002. DOI: 10.3788/IRLA201746.0502002.
    [3] ZHANG Z H, WANG Y X, ZHAO H F, et al. An experimental study on the dynamic response of a hull girder subjected to near field underwater explosion [J]. Marine Structures, 2015, 44: 43–60. DOI: 10.1016/j.marstruc.2015.07.002.
    [4] ZONG Z, ZHAO Y J, LI H T. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock [J]. Marine Structures, 2013, 31: 24–43. DOI: 10.1016/j.marstruc.2013.01.004.
    [5] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. DOI: 10.1016/S0734-743X(00)00051-8.
    [6] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究 [J]. 物理学报, 2008, 57(1): 339–353. DOI: 10.3321/j.issn:1000-3290.2008.01.054.

    ZHANG A M, YAO X L. The law of the underwater explosion bubble motion near free surface [J]. Acta Physica Sinica, 2008, 57(1): 339–353. DOI: 10.3321/j.issn:1000-3290.2008.01.054.
    [7] 刘建湖. 舰船非接触水下爆炸动力学的理论与应用 [D]. 江苏无锡: 中国船舶科学研究中心, 2002: 2–4.

    LIU J H. Theory and its applications of ship dynamic responses to non-contact underwater explosions [D]. Wuxi, Jiangsu, China: China Ship Scientific Research Center, 2002: 2–4.
    [8] 陈莹玉. 水下近场爆炸时不同结构形式的壁压与毁伤特性试验研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019: 1–3.

    CHEN Y Y. Experimental study on wall pressure and damage of different structures to near-field underwater explosion [D]. Harbin, Heilongjian, China: Harbin Engineering University, 2019: 1–3.
    [9] WANG H, CHENG Y S, LIU J, et al. Damage evaluation of a simplified hull girder subjected to underwater explosion load: a semi-analytical model [J]. Marine Structures, 2016, 45: 43–62. DOI: 10.1016/j.marstruc.2015.10.005.
    [10] COLE R H. Underwater explosion [M]. New Jersey, USA: Princeton University Press, 1948: 118–127.
    [11] 孙远翔, 田俊宏. 近场水下爆炸载荷及舰船结构动态响应研究综述 [J]. 舰船科学技术, 2019, 41(6): 1–8. DOI: 10.3404/j.issn.1672-7649.2019.06.001.

    SUN Y X, TIAN J H. Review of near-field underwater explosion load and ship structure dynamic response [J]. Ship Science and Technology, 2019, 41(6): 1–8. DOI: 10.3404/j.issn.1672-7649.2019.06.001.
    [12] ZHANG A M, WANG S P, HUANG C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics [J]. European Journal of Mechanics B: Fluids, 2013, 42: 69–91. DOI: 10.1016/j.euromechflu.2013.06.008.
    [13] 郑监, 张舵, 蒋邦海, 等. 气泡与自由液面相互作用形成水射流的机理研究 [J]. 物理学报, 2017, 66(4): 044702. DOI: 10.7498/aps.66.044702.

    ZHENG J, ZHANG D, JIANG B H, et al. Formation mechanism of water jets induced by the interaction between bubble and free surface [J]. Acta Physica Sinica, 2017, 66(4): 044702. DOI: 10.7498/aps.66.044702.
    [14] SHIMA A, TOMITA Y, GIBSON D C, et al. The growth and collapse of cavitation bubbles near composite surfaces [J]. Journal of Fluid Mechanics, 1989, 203: 199–214. DOI: 10.1017/S0022112089001436.
    [15] TOMITA Y, SHIMA A, TAKAHASHI K. The collapse of a gas bubble attached to a solid wall by a shock wave and the induced impact pressure [J]. Journal of Fluids Engineering, 1983, 105(3): 341–347. DOI: 10.1115/1.3241001.
    [16] 张阿漫, 王超, 王诗平, 等. 气泡与自由液面相互作用的实验研究 [J]. 物理学报, 2012, 61(8): 084701. DOI: 10.7498/aps.61.084701.

    ZHANG A M, WANG C, WANG S P, et al. Experimental study of interaction between bubble and free surface [J]. Acta Physica Sinica, 2012, 61(8): 084701. DOI: 10.7498/aps.61.084701.
    [17] 宗思光, 王江安, 刘涛, 等. 激光聚焦击穿液体的爆炸气泡特性 [J]. 爆炸与冲击, 2011, 31(6): 641–646. DOI: 10.11883/1001-1455(2011)06-0641-06.

    ZONG S G, WANG J A, LIU T, et al. Characteristics of explosion bubbles generated by laser-induced breakdown in liquids [J]. Explosion and Shock Waves, 2011, 31(6): 641–646. DOI: 10.11883/1001-1455(2011)06-0641-06.
    [18] VOGEL A, LAUTERBORN W, TIMM R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary [J]. Journal of Fluid Mechanics, 1989, 206: 299–338. DOI: 10.1017/S0022112089002314.
    [19] GREGORČIČ P, PETKOVŠEK R, MOŽZINA J. Investigation of a cavitation bubble between a rigid boundary and a free surface [J]. Journal of Applied Physics, 2007, 102(9): 094904. DOI: 10.1063/1.2805645.
    [20] KLASEBOER E, HUNG K C, WANG C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387–413. DOI: 10.1017/S0022112005005306.
    [21] 牟金磊, 朱锡, 黄晓明, 等. 水下爆炸气泡射流现象的试验研究 [J]. 哈尔滨工程大学学报, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.

    MU J L, ZHU X, HUANG X M, et al. Experimental study of jets formed by bubbles from underwater explosions [J]. Journal of Harbin Engineering University, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.
    [22] GAN N, LIU L T, YAO X L, et al. Experimental and numerical investigation on the dynamic response of a simplified open floating slender structure subjected to underwater explosion bubble [J]. Ocean Engineering, 2021, 219: 108308. DOI: 10.1016/j.oceaneng.2020.108308.
    [23] CUI P, ZHANG A M, WANG S P. Small-charge underwater explosion bubble experiments under various boundary conditions [J]. Physics of Fluids, 2016, 28(11): 117103. DOI: 10.1063/1.4967700.
    [24] 汪斌, 谭多望. 水中爆炸形成水射流现象的实验研究 [J]. 哈尔滨工程大学学报, 2010, 31(1): 42–46. DOI: 10.3969/j.issn.1006-7043.2010.01.007.

    WANG B, TAN D W. Water jet phenomena caused by underwater explosions [J]. Journal of Harbin Engineering University, 2010, 31(1): 42–46. DOI: 10.3969/j.issn.1006-7043.2010.01.007.
    [25] 胡毅亭, 贾宪振, 饶国宁, 等. 水下爆炸冲击波和气泡脉动的数值模拟研究 [J]. 舰船科学技术, 2009, 31(2): 134–140. DOI: 10.3404/j.issn.1672-7649.2009.02.027.

    HU Y T, JIA X Z, RAO G N, et al. Numerical study of underwater explosion shock wave and bubble pulse [J]. Ship Science and Technology, 2009, 31(2): 134–140. DOI: 10.3404/j.issn.1672-7649.2009.02.027.
    [26] ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. 1972: 86-120.
    [27] 王高辉, 张社荣, 卢文波. 近边界面的水下爆炸冲击波传播特性及气穴效应 [J]. 水利学报, 2015, 46(8): 999–1007. DOI: 10.13243/j.cnki.slxb.20140035.

    WANG G H, ZHANG S R, LU W B. The influence of boundaries on the shock wave propagation characteristics and cavitation effects of underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(8): 999–1007. DOI: 10.13243/j.cnki.slxb.20140035.
    [28] ABOSHIO A, YE J Q. Numerical study of the dynamic response of inflatable offshore fender barrier structures using the coupled Eulerian-Lagrangian discretization technique [J]. Ocean Engineering, 2016, 112: 265–276. DOI: 10.1016/j.oceaneng.2015.12.020.
    [29] MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics [M]. Cham, Switzerland: Springer International Publishing, 2016.
    [30] 胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究 [J]. 高压物理学报, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.201907733.

    HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.201907733.
    [31] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158,172. DOI: 10.13465/j.cnki.jvs.2014.09.028.

    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158,172. DOI: 10.13465/j.cnki.jvs.2014.09.028.
    [32] 张阿漫, 姚熊亮. 基于边界积分法的气泡动态特性综述 [J]. 力学进展, 2008, 38(5): 561–570. DOI: 10.3321/j.issn:1000-0992.2008.05.003.

    ZHANG A M, YAO X L. Review on the bubble dynamics based on boundary integral method [J]. Advances in Mechanics, 2008, 38(5): 561–570. DOI: 10.3321/j.issn:1000-0992.2008.05.003.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  483
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-08-23
  • 网络出版日期:  2022-05-06
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回