RDX基含铝炸药爆轰波结构实验研究

丁彤 裴红波 郭文灿 张旭 郑贤旭 刘仓理

丁彤, 裴红波, 郭文灿, 张旭, 郑贤旭, 刘仓理. RDX基含铝炸药爆轰波结构实验研究[J]. 爆炸与冲击, 2022, 42(6): 062301. doi: 10.11883/bzycj-2021-0217
引用本文: 丁彤, 裴红波, 郭文灿, 张旭, 郑贤旭, 刘仓理. RDX基含铝炸药爆轰波结构实验研究[J]. 爆炸与冲击, 2022, 42(6): 062301. doi: 10.11883/bzycj-2021-0217
DING Tong, PEI Hongbo, GUO Wencan, ZHANG Xu, ZHENG Xianxu, LIU Cangli. Experimental study on detonation wave profiles in RDX-based aluminized explosives[J]. Explosion And Shock Waves, 2022, 42(6): 062301. doi: 10.11883/bzycj-2021-0217
Citation: DING Tong, PEI Hongbo, GUO Wencan, ZHANG Xu, ZHENG Xianxu, LIU Cangli. Experimental study on detonation wave profiles in RDX-based aluminized explosives[J]. Explosion And Shock Waves, 2022, 42(6): 062301. doi: 10.11883/bzycj-2021-0217

RDX基含铝炸药爆轰波结构实验研究

doi: 10.11883/bzycj-2021-0217
基金项目: 国家自然科学基金(11602248)
详细信息
    作者简介:

    丁 彤(1995- ),男,博士研究生,dt1209@mail.ustc.edu.cn

    通讯作者:

    裴红波(1987- ),男,博士,副研究员,hongbo2751@sina.com

  • 中图分类号: O381

Experimental study on detonation wave profiles in RDX-based aluminized explosives

  • 摘要: 为了获得含铝炸药爆轰反应区附近铝粉的反应情况,对两种RDX/Al炸药和一种RDX/LiF炸药的爆轰波结构进行了测量。实验过程中,利用火炮加载产生一维平面波,通过光子多普勒测速仪测量炸药/LiF窗口的界面粒子速度。结果表明:含铝炸药爆轰波的结构与理想炸药的差异较大,其界面粒子速度曲线没有明显的拐点;反应初期,由于气相产物与添加物之间温度的非平衡性,RDX/Al界面的粒子速度低于RDX/LiF炸药的;随后,由于铝粉反应放能,RDX/Al界面的粒子速度高于RDX/LiF炸药的;微米尺度铝粉在CJ面前几乎不发生反应;2、10 μm等两种粒度铝粉的反应延滞时间小于0.8 μs;在本文中,两种粒度铝粉的反应度为16%~31%。
  • 图  1  实验装置

    Figure  1.  Experimental setup

    图  2  测速窗口及探头安装实物图

    Figure  2.  Window of speed measurement and installation of probe

    图  3  三种炸药的界面粒子速度曲线

    Figure  3.  Interface particle velocity curves of three explosives

    图  4  三种炸药的平均界面粒子速度曲线

    Figure  4.  Average interface particle velocity curves of three explosives

    图  5  CJ点附近三种炸药的平均界面粒子速度曲线

    Figure  5.  Average of interface particle velocitiy curves of three explosives near the CJ point

    图  6  RDX炸药爆轰界面粒子速度曲线[20]

    Figure  6.  Detonation interface particle velocity curve of RDX explosive[20]

    图  7  三种炸药的界面位移曲线

    Figure  7.  Interface displacement curves of three explosives

    图  8  实验和模拟的炸药RF15界面粒子速度曲线

    Figure  8.  Experimental and simulated interface particle velocity curves of explosive RF15

    表  1  三种RDX基炸药的配方和参数

    Table  1.   Components and characteristics of three kinds of explosives

    炸药w/%粒径/μm密度/(g·cm−3)D/(m·s−1)
    RDXAlLiF黏合剂
    RF1580 015 5 2.51.8098141±40
    RA15(2 μm)801505 2.01.8038072±40
    RA15(10 μm)80150510.01.7958070±40
    下载: 导出CSV

    表  2  铝和氟化锂的物理参数对比

    Table  2.   Comparison of the main characteristics of Al and LiF

    材料ρ0/(g·cm−3)Tm/KTb/KcV/(J·g−1·K−1)K/(W·m−1·K−1)c0/(km·s−1)λ
    2.700 9332 7401.1762105.3251.338
    氟化锂2.6381 1431.51311.35.1761.359
    下载: 导出CSV
  • [1] TRZCIŃSKI W A, CUDZIŁO S, SZYMAŃCZYK L. Studies of detonation characteristics of aluminum enriched RDX compositions [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(5): 392–400. DOI: 10.1002/prep.200700201.
    [2] GOGULYA M F, DOLGOBORODOV A Y, BRAZHNIKOV M A, et al. Detonation waves in HMX/Al mixtures (pressure and temperature measurements) [C] // Proceeding of the 11th International Detonation Symposium. Snowmass: Office of Naval Research, 1998: 979−988.
    [3] 裴红波, 聂建新, 覃剑峰. 基于非平衡多相模型的含铝炸药爆速研究 [J]. 爆炸与冲击, 2013, 33(3): 311–314. DOI: 10.11883/1001-1455(2013)03-0311-04.

    PEI H B, NIE J X, QIN J F. Investigation on detonation velocity of aluminized explosives based on disequilibrium multiphase model [J]. Explosion and Shock Waves, 2013, 33(3): 311–314. DOI: 10.11883/1001-1455(2013)03-0311-04.
    [4] CAMPBELL T J, ARAL G, OGATA S, et al. Oxidation of aluminum nanoclusters [J]. Physical Review B, 2005, 71(20): 205413. DOI: 10.1103/PhysRevB.71.205413.
    [5] BECKSTEAD M W. Correlating aluminum burning times [J]. Combustion, Explosion and Shock Waves, 2005, 41(5): 533–546. DOI: 10.1007/s10573-005-0067-2.
    [6] YE S, WU J H, XUE M A, et al. Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave [J]. Journal of Physics D: Applied Physics, 2008, 41(23): 235501. DOI: 10.1088/0022-3727/41/23/235501.
    [7] CARNEY J R, MILLER J S, GUMP J C, et al. Time-resolved optical measurements of the post-detonation combustion of aluminized explosives [J]. Review of Scientific Instruments, 2006, 77(6): 063103. DOI: 10.1063/1.2200766.
    [8] LEWIS W K, RUMCHIK C G, BROUGHTON P B, et al. Time-resolved spectroscopic studies of aluminized explosives: chemical dynamics and apparent temperatures [J]. Journal of Applied Physics, 2012, 111(1): 014903. DOI: 10.1063/1.3673602.
    [9] 裴红波, 钟斌, 李星瀚, 等. RDX基含铝炸药圆筒试验及状态方程研究 [J]. 火炸药学报, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.

    PEI H B, ZHONG B, LI X H, et al. Study on the cylinder tests and equation of state in RDX based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.
    [10] 沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响 [J]. 火炸药学报, 2013, 36(3): 50–53. DOI: 10.3969/j.issn.1007-7812.2013.03.012.

    SHEN F, WANG F, YUAN J F, et al. Influence of Al content on the driving ability of RDX-based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 50–53. DOI: 10.3969/j.issn.1007-7812.2013.03.012.
    [11] 陈朗, 张寿齐, 赵玉华. 不同铝粉尺寸含铝炸药加速金属能力的研究 [J]. 爆炸与冲击, 1999, 19(3): 250–255.

    CHEN L, ZHANG S Q, ZHAO Y H. Study of the metal acceleration capacities of aluminized explosives with spherical aluminum particles of different diameter [J]. Explosion and Shock Waves, 1999, 19(3): 250–255.
    [12] 黄辉, 黄亨建, 黄勇, 等. 以RDX为基的含铝炸药中铝粉粒度和氧化剂形态对加速金属能力的影响 [J]. 爆炸与冲击, 2006, 26(1): 7–11. DOI: 10.11883/1001-1455(2006)01-0007-05.

    HUANG H, HUANG H J, HUANG Y, et al. The influence of aluminum particle size and oxidizer morphology in RDX-based aluminized explosives on their ability to accelerate metals [J]. Explosion and Shock Waves, 2006, 26(1): 7–11. DOI: 10.11883/1001-1455(2006)01-0007-05.
    [13] 胡宏伟, 严家佳, 陈朗, 等. 铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响 [J]. 爆炸与冲击, 2017, 37(1): 157–161. DOI: 10.11883/1001-1455(2017)01-0157-05.

    HU H W, YAN J J, CHEN L, et al. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum [J]. Explosion and Shock Waves, 2017, 37(1): 157–161. DOI: 10.11883/1001-1455(2017)01-0157-05.
    [14] 赵继波, 李金河, 谭多望, 等. 铝氧比对水中爆炸近场冲击波的影响 [J]. 含能材料, 2009, 17(4): 420–423. DOI: 10.3969/j.issn.1006-9941.2009.04.011.

    ZHAO J B, LI J H, TAN D W, et al. Effects of ratios of aluminum to oxygen on shock wave of cylindrical charge at underwater explosive close-field [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 420–423. DOI: 10.3969/j.issn.1006-9941.2009.04.011.
    [15] 曾亮, 焦清介, 任慧, 等. 含铝炸药二次反应起始时间实验研究 [J]. 火工品, 2011(2): 19–23. DOI: 10.3969/j.issn.1003-1480.2011.02.006.

    ZENG L, JIAO Q J, REN H, et al. Experimental study on the secondary reaction time of aluminized explosive [J]. Initiators & Pyrotechnics, 2011(2): 19–23. DOI: 10.3969/j.issn.1003-1480.2011.02.006.
    [16] TAO W C. Understanding composite explosive energetics: Ⅳ. reactive flow modeling of aluminum reaction kinetics in PETN and TNT using normalized product equation of state [C] // The Tenth Symposium (International) on Detonation. 1993.
    [17] MANNER V W, PEMBERTON S J, GUNDERSON J A, et al. The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives [J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 198–206. DOI: 10.1002/prep.201100138.
    [18] CHAN S K. Reaction delay of aluminum in condensed explosives [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(6): 897–903. DOI: 10.1002/prep.201400093.
    [19] 张宝銔, 张庆明, 黄凤雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2001: 151.
    [20] PEI H B, HUANG W B, ZHANG X, et al. Measuring detonation wave profiles in plastic-bonded explosives using PDV [J]. AIP Advances, 2019, 9(1): 015306. DOI: 10.1063/1.5057879.
    [21] PEI H B, NIE J X, JIAO Q J. Study on the detonation parameters of aluminized explosives based on a disequilibrium multiphase model [J]. Central European Journal of Energetic Materials, 2014, 11(4): 491–500.
    [22] 孙承纬. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 304.
    [23] LI X H, PEI H B, ZHANG X, et al. Effect of aluminum particle size on the performance of aluminized explosives [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(5): 807–813. DOI: 10.1002/prep.201900308.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  169
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 修回日期:  2021-11-08
  • 网络出版日期:  2022-05-30
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回