重组竹顺纹冲击力学性能研究

王明涛 卢玉斌 蔡雄峰 姜锡权 陈林碧

王明涛, 卢玉斌, 蔡雄峰, 姜锡权, 陈林碧. 重组竹顺纹冲击力学性能研究[J]. 爆炸与冲击, 2022, 42(4): 043102. doi: 10.11883/bzycj-2021-0260
引用本文: 王明涛, 卢玉斌, 蔡雄峰, 姜锡权, 陈林碧. 重组竹顺纹冲击力学性能研究[J]. 爆炸与冲击, 2022, 42(4): 043102. doi: 10.11883/bzycj-2021-0260
WANG Mingtao, LU Yubin, CAI Xiongfeng, JIANG Xiquan, CHEN Linbi. A study of impact mechanical properties of the bamboo scrimber along the grain[J]. Explosion And Shock Waves, 2022, 42(4): 043102. doi: 10.11883/bzycj-2021-0260
Citation: WANG Mingtao, LU Yubin, CAI Xiongfeng, JIANG Xiquan, CHEN Linbi. A study of impact mechanical properties of the bamboo scrimber along the grain[J]. Explosion And Shock Waves, 2022, 42(4): 043102. doi: 10.11883/bzycj-2021-0260

重组竹顺纹冲击力学性能研究

doi: 10.11883/bzycj-2021-0260
基金项目: 福建省科学院科学技术合作计划(STS)(2020T3018)
详细信息
    作者简介:

    王明涛(1996- ),男,硕士研究生,s1908091@st.nuc.edu.cn

    通讯作者:

    卢玉斌(1980- ),男,博士,研究员,luyubin@fjirsm.ac.cn

  • 中图分类号: O347.3; TU531.3

A study of impact mechanical properties of the bamboo scrimber along the grain

  • 摘要: 重组竹是一种新型竹基复合材料,其力学性能优于落叶松等木材。为评价重组竹在动态加载下的顺纹抗冲击力学性能,以密度1.06 g/cm3、含水率8.52%、龄期3~5年的毛竹基重组竹为研究对象,通过准静态单轴压缩和循环加卸载以及动态加载实验,研究了重组竹加载变形过程、各项力学性能指标以及对应变率的敏感性。结果表明:重组竹顺纹压缩过程可以分为弹性变形和弹塑性变形阶段,破坏类型为延性破坏,其各项强度指标随应变率的提高而提高,动态增长因子与应变率之间呈现线性关系,斜率为0.0024;重组竹压缩过程中的应变比能与应变之间呈线性关系,且随应变率的增长而增大,证明其吸能能力随着应变率的增大而提高。实验结果证明,重组竹顺纹具有良好的抗冲击力学性能和显著的应变率效应。
  • 图  1  重组竹试样制备

    Figure  1.  Manufacturing of bamboo scrimber samples for tests

    图  2  MTS材料试验机和SHPB实验平台

    Figure  2.  MTS testing machine and SHPB experimental platform

    图  3  佩戴保护套筒空打波形

    Figure  3.  Wave profiles with protection

    图  4  应力平衡情况

    Figure  4.  Stress equilibrium situation

    图  5  恒定应变率情况

    Figure  5.  Constant strain rate situation

    图  6  重组竹在不同应变率下的应力-应变曲线

    Figure  6.  Stress-strain curves of bamboo scrimber under different strain rates

    图  7  重组竹准静态压缩的3个变形阶段

    Figure  7.  Three deformation stages of bamboo scrimber under quasi-static compression

    图  8  循环加卸载的应力-应变曲线

    Figure  8.  Stress-strain curves of cyclic loading and unloading tests

    图  9  重组竹在冲击加载下的破坏形态

    Figure  9.  Failure morphology of bamboo scrimber under impact loading

    图  10  重组竹在不同应变率下的平台应力

    Figure  10.  The plateau stress of bamboo scrimber under different strain rates

    图  11  重组竹在不同应变率下的动态增强因子

    Figure  11.  The dynamic increase factor of bamboo scrimber under different strain rates

    图  12  重组竹在不同应变率下的应变比能

    Figure  12.  The strain energy densities of bamboo scrimber under different strain rates

    表  1  重组竹在不同应变率下的动态力学参数

    Table  1.   Dynamic mechanical parameters of bamboo scrimber under different strain rates

    编号应变率/s−1屈服强度/MPa压缩破坏强度/MPa平台应力/MPa应变比能/(MJ·m−3应力平衡因子η/%恒应变率因子κ/%
    QX1-1010−463.1971.6868.355.72
    变异系数[0][7.05%][7.60%][7.44%][7.69%]
    DX-01335116.69135.03132.088.7395.9126.10
    DX-02354120.03131.41129.789.8395.5625.06
    DX-03356122.24134.98134.609.5897.6030.00
    平均值348119.65133.81132.159.38
    变异系数[3.33%][2.34%][1.55%][1.82%][6.15%]
    DX-04430121.61142.72141.489.3495.0126.88
    DX-05450129.60135.14134.4211.8395.3429.55
    DX-06480126.10146.22140.0612.7896.5621.34
    平均值449125.77141.36138.6511.32
    变异系数[4.53%][2.60%][3.27%][2.20%][12.82%]
    DX-07502136.27143.29141.8214.8095.3526.45
    DX-08512136.04143.43139.9714.1897.2827.65
    DX-09542133.05142.95140.4014.8895.5528.86
    平均值519135.12143.22140.7314.62
    变异系数[3.28%][1.09%][0.14%][0.56%][2.14%]
    DX-10608164.84174.16170.8921.1296.8725.65
    DX-11642154.72164.12160.2020.4698.5523.53
    DX-12654165.39174.02171.6620.9295.9527.68
    平均值635161.65170.77167.5820.83
    变异系数[3.07%][3.03%][2.75%][3.12%][1.33%]
    下载: 导出CSV
  • [1] 秦莉, 于文吉. 重组竹研究现状与展望 [J]. 世界林业研究, 2009, 22(6): 55–59. DOI: 10.13348/j.cnki.sjlyyj.2009.06.007.

    QIN L, YU W J. Status and prospects of reconstituted bamboo lumber [J]. World Forestry Research, 2009, 22(6): 55–59. DOI: 10.13348/j.cnki.sjlyyj.2009.06.007.
    [2] 冼杏娟, 冼定国. 竹材的微观结构及其与力学性能的关系 [J]. 竹子研究汇刊, 1990, 9(3): 10–23.

    XIAN X J, XIAN D G. The relationship of microstructure and mechanical properties of bamboo [J]. Journal of Bamboo Research, 1990, 9(3): 10–23.
    [3] 于文吉. 我国重组竹产业发展现状与趋势分析 [J]. 木材工业, 2012, 26(1): 11–14. DOI: 10.19455/j.mcgy.2012.01.005.

    YU W J. Current status and future development of bamboo scrimber industry in China [J]. Chinese Journal of Wood Science and Technology, 2012, 26(1): 11–14. DOI: 10.19455/j.mcgy.2012.01.005.
    [4] 张俊珍, 任海青, 钟永, 等. 重组竹抗压与抗拉力学性能的分析 [J]. 南京林业大学学报(自然科学版), 2012, 36(4): 107–111. DOI: 10.3969/j.issn.1000-2006.2012.04.022.

    ZHANG J Z, REN H Q, ZHONG Y, et al. Analysis of compressive and tensile mechanical properties of recombinant bamboo [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012, 36(4): 107–111. DOI: 10.3969/j.issn.1000-2006.2012.04.022.
    [5] 李霞镇, 钟永, 任海青, 等. 毛竹基重组竹力学性能研究 [J]. 木材加工机械, 2016, 27(4): 28–32. DOI: 10.13594/j.cnki.mcjgjx.2016.04.008.

    LI X Z, ZHONG Y, REN H Q, et al. Study on mechanical properties of recombinant bamboo produced by moso bamboo [J]. Wood Processing Machinery, 2016, 27(4): 28–32. DOI: 10.13594/j.cnki.mcjgjx.2016.04.008.
    [6] 孙玲玲. 重组竹顺纹单轴应力-应变关系研究 [D]. 南京: 南京林业大学, 2013: 23−35.
    [7] 魏洋, 周梦倩, 袁礼得. 重组竹柱偏心受压力学性能 [J]. 复合材料学报, 2016, 33(2): 379–385. DOI: 10.13801/j.cnki.fhclxb.20150703.002.

    WEI Y, ZHOU M Q, YUAN L D. Mechanical performance of glulam bamboo columns under eccentric loading [J]. Acta Materiae Compositae Sinica, 2016, 33(2): 379–385. DOI: 10.13801/j.cnki.fhclxb.20150703.002.
    [8] WEI Y, TANG S F, JI X W, et al. Stress-strain behavior and model of bamboo scrimber under cyclic axial compression [J]. Engineering Structures, 2020, 209: 110279. DOI: 10.1016/j.engstruct.2020.110279.
    [9] TAN C, LI H T, WEI D D, et al. Mechanical performance of parallel bamboo strand lumber columns under axial compression: experimental and numerical investigation [J]. Construction and Building Materials, 2020, 231: 117168. DOI: 10.1016/j.conbuildmat.2019.117168.
    [10] LI X, ASHRAF M, LI H T, et al. An experimental investigation on parallel bamboo strand lumber specimens under quasi static and impact loading [J]. Construction and Building Materials, 2019, 228: 116724. DOI: 10.1016/j.conbuildmat.2019.116724.
    [11] 于子绚, 江泽慧, 王戈, 等. 重组竹的耐冲击性能 [J]. 东北林业大学学报, 2012, 40(4): 46–48. DOI: 10.13759/j.cnki.dlxb.2012.04.006.

    YU Z X, JIANG Z H, WANG G, et al. Impact resistance properties of bamboo scrimber [J]. Journal of Northeast Forestry University, 2012, 40(4): 46–48. DOI: 10.13759/j.cnki.dlxb.2012.04.006.
    [12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材物理力学试验方法总则: GB/T 1928−2009 [S]. 北京: 中国标准出版社, 2009.
    [13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材顺纹抗压强度试验方法: GB/T 1935−2009 [S]. 北京: 中国标准出版社, 2009.
    [14] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017: 178−179.
    [15] 徐明利, 张若棋, 张光莹. SHPB实验中试件内早期应力平衡分析 [J]. 爆炸与冲击, 2003, 23(3): 235–240.

    XU M L, ZHANG R Q, ZHANG G Y. Analysis of early stage specimen stress equilibrium in SHPB experiment [J]. Explosion and Shock Waves, 2003, 23(3): 235–240.
    [16] HASSAN M, WILLE K. Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in split Hopkinson pressure bar (SHPB) using pulse shaping technique [J]. Construction and Building Materials, 2017, 144: 747–757. DOI: 10.1016/j.conbuildmat.2017.03.185.
    [17] CAO S, XUE G L, SONG W D, et al. Strain rate effect on dynamic mechanical properties and microstructure of cemented tailings composites [J]. Construction and Building Materials, 2020, 247: 118537. DOI: 10.1016/j.conbuildmat.2020.118537.
    [18] XIONG B B, DEMARTINO C, XIAO Y. High-strain rate compressive behavior of CFRP confined concrete: Large diameter SHPB tests [J]. Construction and Building Materials, 2019, 201: 484–501. DOI: 10.1016/j.conbuildmat.2018.12.144.
    [19] WOUTS J, HAUGOU G, OUDJENE M, et al. Strain rate effects on the compressive response of wood and energy absorption capabilities - Part A: experimental investigations [J]. Composite Structures, 2016, 149: 315–328. DOI: 10.1016/j.compstruct.2016.03.058.
    [20] QIN K, YANG L M, HU S S. Mechanism of strain rate effect based on dislocation theory [J]. Chinese Physics Letters, 2009, 26(3): 036103. DOI: 10.3321/j.issn:0256-307X.2009.03.050.
    [21] ZHOU S C, DEMARTINO C, XIAO Y. High-strain rate compressive behavior of Douglas fir and glubam [J]. Construction and Building Materials, 2020, 258: 119466. DOI: 10.1016/j.conbuildmat.2020.119466.
    [22] AL-ZUBAIDY H, ZHAO X L, AL-MAHAIDI R. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates [J]. Composite Structures, 2013, 96: 153–164. DOI: 10.1016/j.compstruct.2012.09.032.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  200
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-11-09
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回