边缘冲击(EOI)作用下透明陶瓷破坏特性研究

韩国庆 张先锋 谈梦婷 包阔 李逸

韩国庆, 张先锋, 谈梦婷, 包阔, 李逸. 边缘冲击(EOI)作用下透明陶瓷破坏特性研究[J]. 爆炸与冲击, 2022, 42(5): 053102. doi: 10.11883/bzycj-2021-0292
引用本文: 韩国庆, 张先锋, 谈梦婷, 包阔, 李逸. 边缘冲击(EOI)作用下透明陶瓷破坏特性研究[J]. 爆炸与冲击, 2022, 42(5): 053102. doi: 10.11883/bzycj-2021-0292
HAN Guoqing, ZHANG Xianfeng, TAN Mengting, BAO Kuo, LI Yi. Failure characteristics of three transparent ceramics materials under the edge-on impact loading[J]. Explosion And Shock Waves, 2022, 42(5): 053102. doi: 10.11883/bzycj-2021-0292
Citation: HAN Guoqing, ZHANG Xianfeng, TAN Mengting, BAO Kuo, LI Yi. Failure characteristics of three transparent ceramics materials under the edge-on impact loading[J]. Explosion And Shock Waves, 2022, 42(5): 053102. doi: 10.11883/bzycj-2021-0292

边缘冲击(EOI)作用下透明陶瓷破坏特性研究

doi: 10.11883/bzycj-2021-0292
基金项目: 国家自然科学基金(11772159)
详细信息
    作者简介:

    韩国庆(1996- ),男,博士研究生,758571417@qq.com

    通讯作者:

    张先锋(1978- ),男,博士,教授,博士生导师,lynx@njust.edu.cn

  • 中图分类号: O385

Failure characteristics of three transparent ceramics materials under the edge-on impact loading

  • 摘要: 相较于传统透明材料,相同面密度下透明陶瓷具有更优异的抗冲击性能,使其成为极具应用前景的透明装甲防护材料。研究透明陶瓷在冲击下的破坏响应及损伤演化规律,对透明陶瓷装甲的结构设计及防护能力的提高起到至关重要的作用。为了比较传统透明材料与典型透明陶瓷材料在冲击过程中的破坏特性差异,利用9 mm弹道枪发射平台进行了浮法玻璃、YAG透明陶瓷及镁铝尖晶石透明陶瓷3种透明材料的边缘冲击试验,破片发射速度为200~300 m/s。通过高速摄影捕捉破片的撞击过程,分析了粉碎区及主裂纹扩展距离随时间的变化规律。结果表明,3种材料在不同速度破片的冲击作用下,粉碎区面积与材料强度呈负相关性。对同种材料,在200~300 m/s速度范围内,破片撞击速度对主裂纹的扩展速度没有影响。同时比较了玻璃与透明陶瓷在宏观尺度上的损伤演化特征差异:玻璃在粉碎区两侧产生三角形的次裂纹区域,陶瓷材料则会产生细长的次裂纹簇,并会产生较明显的裂纹“分叉”现象。利用扫描电子显微镜对回收到的陶瓷碎片进行观测,并分析了2种透明陶瓷材料在细观尺度破坏特征的异同。2种透明陶瓷的径向裂纹断面上会出现从沿晶断裂到穿晶断裂的过渡变化,而环向断裂面上几乎都是沿晶和穿晶混合断裂。2种透明陶瓷中,仅YAG透明陶瓷在沿晶断裂时会出现晶体“剥落”现象。
  • 图  1  碳化钨弹体

    Figure  1.  Tungsten carbide projectile

    图  2  镁铝尖晶石透明陶瓷靶

    Figure  2.  A MgAl2O4 spinel transparent ceramic target

    图  3  试验布局示意图及靶体固定照片

    Figure  3.  Schematic of EOI test set up and target fixation

    图  4  三种材料在破片冲击下的破坏过程

    Figure  4.  Damage process of three transparent materials impacted by the tungsten carbide fragments

    图  5  碳化钨破片以不同速度撞击镁铝尖晶石透明陶瓷的破碎情况

    Figure  5.  Fragmentation of tungsten carbide fragments impacting MgAl2O3 transparent ceramics with different impact velocities

    图  6  回收试样

    Figure  6.  Recovered samples

    图  7  粉碎区及主裂纹扩展距离

    Figure  7.  Crush zone and main crack propagation distance

    图  8  粉碎区面积随撞击时间的演化

    Figure  8.  Evolution of the crushing zone area with impact time

    图  9  主裂纹扩展距离随时间演化过程

    Figure  9.  Distance of the main crack propagation as a function of impact time

    图  10  EOI试验中波以及裂纹扩展示意图

    Figure  10.  Schematic of wave and crack propagation in a plate caused by EOI test

    图  11  超白玻璃的球型破片EOI试验[5]

    Figure  11.  EOI test on starphire glass with steel sphere[5]

    图  12  浮法玻璃(Glass-1)在EOI试验下的破坏特征

    Figure  12.  Failure characteristics of float glass (Glass-1) under EOI test

    图  13  浮法玻璃(Glass-2)的次裂纹区域沿边缘扩展

    Figure  13.  Secondary crack zone of float glass (Glass-2) extends along the edge with higher velocity

    图  14  EOI试验中纵波的反射

    Figure  14.  Reflecton of longitudinal waves in the EOI test

    图  15  透明陶瓷(Spinel-1)在EOI试验下的破坏特征

    Figure  15.  Failure characteristics of transparent ceramics (Spinel-1) under EOI test

    图  16  镁铝尖晶石透明陶瓷与YAG透明陶瓷中被测碎片的位置

    Figure  16.  Location of fragments in the MgAl2O3 spinel ceramics and YAG ceramics

    图  17  镁铝尖晶石透明陶瓷与YAG透明陶瓷断面典型细观特征

    Figure  17.  Typical fracture characteristics of cross-sections of MgAl2O3 spinel transparent ceramic and YAG transparent ceramic

    图  18  YAG透明陶瓷碎片(①)与镁铝尖晶石透明陶瓷(③)径向及环向断裂面上沿晶及穿晶变化

    Figure  18.  Intergranular with transgranular changes of YAG transparent ceramics (①) and MgAl2O3 spinel transparent ceramics (③)on the radial and ring fracture surfaces

    图  19  镁铝尖晶石透明陶瓷穿晶断裂

    Figure  19.  Transgranular fracture in MgAl2O3 spinel transparent ceramics

    图  20  YAG透明陶瓷晶体“剥落”现象

    Figure  20.  Peeling-off phenomenon in YAG transparent ceramic crystal

    图  21  镁铝尖晶石透明陶瓷与YAG透明陶瓷的穿晶断裂

    Figure  21.  Transgranular fracture in MgAl2O3 spinel transparent ceramics and YAG transparent ceramics

    表  1  碳化钨弹体尺寸及材料参数

    Table  1.   Tungsten carbide projectile size and material parameters

    弹体直径/mm钴质量分数/%密度/(g·cm−3洛氏硬度弹性模量/GPa抗弯强度/GPa泊松比
    9814.990.56211.840.24
    下载: 导出CSV

    表  2  靶体尺寸和材料参数

    Table  2.   Target size and material parameters

    靶体靶体尺寸/
    (mm×mm)
    靶体厚度/
    mm
    材料密度/
    (kg·m−3
    杨氏模量/
    GPa
    泊松比体积模量/
    GPa
    剪切模量/
    GPa
    Hugoniot弹性
    极限/GPa
    层裂强度/
    MPa
    浮法玻璃70×7082 480 92.760.159 45.4 40.0 5.95
    YAG透明陶瓷90×9094 550282.000.250188.0112.812.00548
    镁铝尖晶石透明陶瓷70×7063 573281.000.277210.0110.013.50528
    下载: 导出CSV

    表  3  试验参数及弹体破碎情况

    Table  3.   Test parameters and fragmentation of the projectile

    靶体靶体编号靶体尺寸/
    (mm×mm×mm)
    破片撞击速度/
    (m·s−1
    破片撞击情况破片破碎情况
    浮法玻璃Glass-170.10×70.10×7.76198正撞击未破碎
    Glass-270.06×63.36×7.78262正撞击未破碎
    Glass-370.08×69.98×7.78287正撞击未破碎
    YAG透明陶瓷YAG-190.08×90.10×9.06142偏撞击未破碎
    YAG-290.04×90.12×9.04237正撞击破碎
    YAG-390.06×90.10×9.04284偏撞击未破碎
    镁铝尖晶石透明陶瓷Spinel-170.04×70.02×6.04202正撞击破碎
    Spinel-270.02×70.20×6.04250正撞击破碎
    Spinel-370.02×70.04×5.96280正撞击破碎
    下载: 导出CSV
  • [1] 马建. 某单兵制导破甲战斗部威力性能研究 [D]. 太原: 中北大学, 2013.

    MA J. Research on the penetration of the portable guidance shaped charge warhead [D]. Taiyuan: North University of China, 2013.
    [2] 陈贝贝, 张先锋, 邓佳杰, 等. 弹体侵彻YAG透明陶瓷/玻璃的剩余深度 [J]. 爆炸与冲击, 2020, 40(8): 083301. DOI: 10.11883/bzycj-2019-0372.

    CHEN B B, ZHANG X F, DENG J J, et al. Residual penetration depth of a projectile into YAG transparent ceramic/glass [J]. Explosion and Shock Waves, 2020, 40(8): 083301. DOI: 10.11883/bzycj-2019-0372.
    [3] 赫延明. 防弹装甲用透明镁铝尖晶石陶瓷研究 [D]. 武汉: 武汉理工大学, 2003.

    HAO Y M. Investigation on transparent MgAl2O4 spinel ceramic for bulletproof armor [D]. Wuhan: Wuhan University of Technology, 2003
    [4] STRASSBURGER E, SENF H, ROTHENHUSLER H. Fracture propagation during impact in three types of ceramics [J]. Journal de Physique Ⅳ (Proceedings), 1994, 4(C8): 653–658. DOI: 10.1051/jp4:1994899.
    [5] STRASSBURGER E. High-speed photographic study of wave propagation and impact damage in transparent aluminum oxynitride (AION): ARL-CR-605 [R]. Warren, Michigan, USA: Army Research Laboratory Aberdeen Proving Ground, 2006.
    [6] GRUJICIC M, PANDURANGAN B, COUTRIS N, et al. A simple ballistic material model for soda-lime glass [J]. International Journal of Impact Engineering, 2008, 36(3): 386–401. DOI: 10.1016/j.ijimpeng.2008.08.001.
    [7] ERZAR B, FORQUIN P. Experiments and mesoscopic modelling of dynamic testing of concrete [J]. Mechanics of Materials, 2011, 43(9): 505–527. DOI: 10.1016/j.mechmat.2011.05.002.
    [8] GRANGE S, FORQUIN P, MENCACCI S, et al. On the dynamic fragmentation of two limestones using edge-on impact tests [J]. International Journal of Impact Engineering, 2008, 35(9): 977–991. DOI: 10.1016/j.ijimpeng.2007.07.006.
    [9] STRASSBURGER E, SENF H, DENOUAL C, et al. An experimental approach to validate damage evolution laws for brittle materials [J]. Journal de Physique Ⅳ, 1997, 7: 909–914.
    [10] 杨岳峰, 唐春安, 梁正召. 非均匀脆性材料EOI试验模拟中的动接触法 [J]. 计算力学学报, 2013, 30(6): 849–853. DOI: 10.7511/jslx201306016.

    YANG Y F, TANG C A, LIANG Z Z. A dynamic contact method in the EOI test for heterogeneous brittle materials [J]. Chinese Journal of Computation Mechanics, 2013, 30(6): 849–853. DOI: 10.7511/jslx201306016.
    [11] DENOUAL C, COTTENOT C E, HILD F. Analysis of the degradation mechanisms in an impacted ceramic [J]. AIP Conference Proceedings, 1998, 429(1): 427–430. DOI: 10.1063/1.55543.
    [12] STRASSBURGER E. Visualization of impact damage in ceramics using the edge-on impact technique [J]. International Journal of Applied Ceramic Technology, 2010, 1(3): 235–242. DOI: 10.1111/j.1744-7402.2004.tb00175.x.
    [13] RIEDEL W, HIERMAIER S, THOMA K. Transient stress and failure analysis of impact experiments with ceramics [J]. Materials Science & Engineering B, 2010, 173(1): 139–147. DOI: 10.1016/j.mseb.2009.10.038.
    [14] SUBHASH G, MAITI S, GEUBELLE P H, et al. Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics [J]. Journal of the American Ceramic Society, 2008, 91(9): 2777–2791. DOI: 10.1111/j.1551-2916.2008.02624.x.
    [15] GHOSH D, SUBHASH G, RADHAKRISHNAN R, et al. Scratch-induced microplasticity and microcracking in zirconium diboride-silicon carbide composite [J]. Acta Materialia, 2008, 56(13): 3011–3022. DOI: 10.1016/j.actamat.2008.02.038.
    [16] 包阔, 张先锋, 王桂吉, 等. 破片撞击下YAG透明陶瓷复合靶的破坏特性 [J]. 爆炸与冲击, 2021, 41(3): 031402. DOI: 10.11883/bzycj-2020-0339.

    BAO K, ZHANG X F, WANG G J, et al. Fracture characteristics of YAG transparent ceramic composite targets subjected to impact of sphere fragments [J]. Explosion and Shock Waves, 2021, 41(3): 031402. DOI: 10.11883/bzycj-2020-0339.
    [17] 谈梦婷, 张先锋, 包阔, 等. 长杆弹撞击装甲陶瓷界面击溃/侵彻特性 [J]. 爆炸与冲击, 2021, 41(3): 031406. DOI: 10.11883/bzycj-2020-0338.

    TAN M T, ZHANG X F, BAO K, et al. Characteristics of interface defeat and penetration during the impact between a ceramic armor and a long-rod projectile [J]. Explosion and Shock Waves, 2021, 41(3): 031406. DOI: 10.11883/bzycj-2020-0338.
    [18] 龚江宏. 陶瓷材料断裂力学 [M]. 北京: 清华大学出版社, 2001: 23–24.
    [19] HANEY E J, SUBHASH G. Edge-on-impact response of a coarse-grained magnesium aluminate spinel rod [J]. International Journal of Impact Engineering, 2012, 40/41: 26–34. DOI: 10.1016/j.ijimpeng.2011.10.001.
    [20] LASALVIA J C, NORMANDIA M J, MILLER H T, et al. Sphere impact induced damage in ceramics: Ⅱ. armor-grade B4C and WC [M] // SWAB J J. Advances in Ceramic Armor: A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites. 2005. DOI: 10.1002/9780470291276. ch21.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  90
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 录用日期:  2022-03-30
  • 修回日期:  2022-01-12
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回