超高压水射流喷头水动力特性研究

陈正寿 黄璐云 杜炳鑫 陈源捷 倪路新 姜华

陈正寿, 黄璐云, 杜炳鑫, 陈源捷, 倪路新, 姜华. 超高压水射流喷头水动力特性研究[J]. 爆炸与冲击, 2022, 42(5): 053303. doi: 10.11883/bzycj-2021-0310
引用本文: 陈正寿, 黄璐云, 杜炳鑫, 陈源捷, 倪路新, 姜华. 超高压水射流喷头水动力特性研究[J]. 爆炸与冲击, 2022, 42(5): 053303. doi: 10.11883/bzycj-2021-0310
CHEN Zhengshou, HUANG Luyun, DU Bingxin, CHEN Yuanjie, NI Luxin, JIANG Hua. Insight of hydrodynamic characteristics related to ultra-high pressure water jet rust removal sprayers[J]. Explosion And Shock Waves, 2022, 42(5): 053303. doi: 10.11883/bzycj-2021-0310
Citation: CHEN Zhengshou, HUANG Luyun, DU Bingxin, CHEN Yuanjie, NI Luxin, JIANG Hua. Insight of hydrodynamic characteristics related to ultra-high pressure water jet rust removal sprayers[J]. Explosion And Shock Waves, 2022, 42(5): 053303. doi: 10.11883/bzycj-2021-0310

超高压水射流喷头水动力特性研究

doi: 10.11883/bzycj-2021-0310
基金项目: 国家自然科学基金(41776105);浙江省属高校基本科研业务费(2021JD002);舟山市科技计划(2019C21010)
详细信息
    作者简介:

    陈正寿(1979- ),男,博士,教授,aaaczs@163.com

    通讯作者:

    杜炳鑫(1987- ),男,博士,讲师,dubingxin@zjou.edu.cn

  • 中图分类号: O358

Insight of hydrodynamic characteristics related to ultra-high pressure water jet rust removal sprayers

  • 摘要: 基于对超高压水射流喷头的外部参数定量化分析,给出关于射流核心参数的优选方法,旨在提高水射流效率。首先,根据超高压水射流除锈喷嘴的工作特点,考虑到水的压缩性和空化效应,建立单束定冲角、多束旋转喷头的三维数值模型,通过改变靶距、入射角度、转速等外部特征参数,实施了超高压水射流除锈喷头水动力性能模拟研究。然后,重点分析单束定冲角喷嘴靶距、入射角度对靶面剪切应力、打击压强分布的影响,以及射流等速核长度与最佳射流靶距的关系。发现当靶距等于喷嘴射流等速核长度时,壁面剪切应力达到最佳水平。此外,通过分析高速旋转射流卷吸效应、靶面水垫作用对靶面所受剪切应力、打击压强分布的影响,得到最佳转速范围和对应线速度。初步阐明了射流冲击剥离的机理、单束定冲角以及多束旋转射流的特征参数对射流效果的影响,可为超高压除锈喷头的设计、装配提供参考。
  • 图  1  直锥型喷嘴以及水射流结构示意图

    Figure  1.  Schematic diagram of the straight cone nozzle structure and water jet structure

    图  2  单束定冲角喷头三维模型和网格拓扑结构剖面图

    Figure  2.  The three-dimensional model and cross-section mesh topology for the single-beam nozzle with a fixed angle of attack

    图  3  单束定冲角喷头射流计算域示意图

    Figure  3.  The computational domain of the impinging jet from the single-beam nozzle with a fixed angle of attack

    图  4  多束旋转喷头实物、模拟模型及对应的三维网格拓扑结构

    Figure  4.  The photo and simulation model of the rotating multi-beam nozzle as well as its corresponding three-dimension mesh topology

    图  5  单喷嘴射流模型计算域各物理量云图

    Figure  5.  Contours of different physical quantities in the computational domain of the single-beam nozzle with a fixed angle of attack

    图  6  斜冲击射流流场速度、壁面剪切应力云图

    Figure  6.  Contours of the oblique impinging jet velocity and wall shear stress

    图  7  不同冲击角度下,壁面打击压强分布

    Figure  7.  Wall pressure distributions at different jet angles

    图  8  不同冲击角度下,壁面剪切应力分布

    Figure  8.  Wall shear stress distributions at different jet angles

    图  9  收敛角30°时不同靶距下的壁面打击压强分布

    Figure  9.  Wall pressure distributions at different standoff distances with a convergence angle of 30°

    图  10  收敛角30°时不同靶距下的壁面剪切应力分布

    Figure  10.  Wall shear stress distributions at different standoff distances with a convergence angle of 30°

    图  11  收敛角40°时不同靶距下的壁面打击压强分布

    Figure  11.  Wall pressure distributions at different standoff distances with a convergence angle of 40°

    图  12  收敛角40°时不同靶距下的壁面剪切应力分布

    Figure  12.  Wall shear stress distributions at different standoff distances with a convergence angle of 40°

    图  13  收敛角120°时不同靶距下的壁面打击压强分布

    Figure  13.  Wall pressure distributions at different standoff distances with a convergence angle of 120°

    图  14  收敛角120°时不同靶距下的壁面剪切应力分布

    Figure  14.  Wall shear stress distributions at different standoff distances with a convergence angle of 120°

    图  15  不同收敛角下,射流轴心速度分布

    Figure  15.  Jet axial velocity distributions at different convergence angles

    图  16  不同转速下,射流流场速度和壁面剪切应力云图

    Figure  16.  Contours of impinging jet velocity and wall shear stress at different rotating speeds

    图  17  多束旋转喷头的射流效果图(0 r/min)

    Figure  17.  Jet effect diagram of a multi-beam rotating nozzle (0 r/min)

    图  18  不同转速下壁面打击压力分布

    Figure  18.  Wall pressure distributions at different rotating speeds

    图  19  不同转速下壁面剪切应力分布

    Figure  19.  Wall shear stress at different rotating speeds

    表  1  网格敏感性验证

    Table  1.   Mesh sensitivity validation

    网络编号网格节点壁面打击压强/MPaδ/%
    Mesh 1 402 324198.29
    Mesh 2 721 127198.990.353
    Mesh 31 058 945199.370.191
    Mesh 41 684 043199.400.015
    下载: 导出CSV

    表  2  固定射流压强为8 MPa,在不同靶距下的壁面打击力

    Table  2.   Wall strike forces under different standoff distances when the jet pressure is fixed to 8 MPa

    靶距/mm壁面打击力/N误差/%
    文献[10]本文
    20208.64209.43−0.4
    100211.88210.620.6
    200212.27211.780.2
    300211.09210.410.3
    400210.01206.981.4
    700207.37205.111.1
    下载: 导出CSV

    表  3  固定靶距为841 mm,在不同射流压强下的壁面打击力

    Table  3.   Wall strike forces under different water jet pressures when the standoff distance is fixed to 841 mm

    射流压强/MPa壁面打击力/N误差/%
    文献[10]本文
    7190.22165.1313.2
    9212.95215.31−1.1
    11239.61234.02 2.3
    15303.21314.87−3.8
    下载: 导出CSV
  • [1] ROBINSON SMART D S. Experimental investigation of effect of abrasive jet nozzle position and angle on coating removal rate [J]. International Journal of Manufacturing Systems, 2011, 1(1): 57–64. DOI: 10.3923/ijmsaj.2011.57.64.
    [2] 王兴如. 基于超高压纯水射流的船壁除锈除漆关键技术与爬壁试验研究 [D]. 辽宁大连: 大连海事大学, 2010. DOI: 10.7666/d.y1837002.

    WANG X R. The key technology and climbing wall experiments study of the ship rust removal based on ultrahigh pressure pure water jet [D]. Dalian, Liaoning, China: Dalian Maritime University, 2010. DOI: 10.7666/d.y1837002.
    [3] 薛胜雄. 超高压水射流自动爬壁除锈机理与成套设备技术 [D]. 杭州: 浙江大学, 2005.

    XUE S X. Studies on the removal rust forming by UHP waterjetting auto-robot and its unit technology [D]. Hangzhou, Zhejiang, China: Zhejiang University, 2005.
    [4] PENG H J, ZHANG P. Numerical simulation of high speed rotating waterjet flow field in a semi enclosed vacuum chamber [J]. Computer Modeling in Engineering & Sciences, 2018, 114(1): 59–73. DOI: 10.3970/cmes.2018.114.059.
    [5] 张子威, 刘会景, 孙鹏飞, 等. 管道射流清洗喷嘴流场的数值模拟与分析 [J]. 煤炭工程, 2017, 49(5): 115–118. DOI: 10.11799/ce201705034.

    ZHANG Z W, LIU H J, SUN P F, et al. Numerical simulation and analysis on flow field of jet nozzle for cleaning pipe [J]. Coal Engineering, 2017, 49(5): 115–118. DOI: 10.11799/ce201705034.
    [6] 施春燕, 袁家虎, 伍凡, 等. 冲击角度对射流抛光中材料去除面形的影响分析 [J]. 光学学报, 2010, 30(2): 513–517. DOI: 10.3788/AOS20103002.0513.

    SHI C Y, YUAN J H, WU F, et al. Influence analysis of impact angle on material removal profile in fluid jet polishing [J]. Acta Optica Sinica, 2010, 30(2): 513–517. DOI: 10.3788/AOS20103002.0513.
    [7] 王丽萍, 蔡晓君, 窦艳涛, 等. 高压水射流清洗参数实验研究 [J]. 实验室研究与探索, 2017, 36(8): 48–51. DOI: 10.3969/j.issn.1006-7167.2017.08.011.

    WANG L P, CAI X J, DOU Y T, et al. Experimental research of high pressure water jet cleaning parameters [J]. Research and Exploration in Laboratory, 2017, 36(8): 48–51. DOI: 10.3969/j.issn.1006-7167.2017.08.011.
    [8] 罗银川, 李秀龙, 张杨, 等. 射流抛光中的流场特性研究 [J]. 光学技术, 2015, 40(4): 376–380. DOI: 10.13741/j.cnki.11-1879/o4.2014.04.020.

    LUO Y C, LI X L, ZHANG Y, et al. Analysis of flow field characteristics in fluid jet polishing [J]. Optical Technique, 2015, 40(4): 376–380. DOI: 10.13741/j.cnki.11-1879/o4.2014.04.020.
    [9] GE Z L, WANG L, WANG M, et al. Rock-breaking properties under the rotatory impact of water jets in water jet drilling [J]. Applied Sciences, 2019, 9(24): 5417. DOI: 10.3390/app9245417.
    [10] WEN J W, CHEN C, CAMPOS U. Experimental research on the performances of water jet devices and proposing the parameters of borehole hydraulic mining for oil shale [J]. PLoS One, 2018, 13(6): e0199027. DOI: 10.1371/journal.pone.0199027.
    [11] 屈长龙. 基于船舶除锈爬壁机器人的高压水射流仿真研究及实验验证 [D]. 广州: 华南理工大学, 2016.

    QU C L. The simulation research and experimental verification on high pressure water jet based on wall climbing robot for hull rust removal [D]. Guangzhou, Guangdong, China: South China University of Technology, 2016.
    [12] 孙家骏. 水射流切割技术 [M]. 江苏徐州: 中国矿业大学出版社, 1992.
    [13] 王正钦. 旋转喷头的数值模拟及参数研究 [D]. 北京: 北京科技大学, 2007.

    WANG Z Q. Numerical simulation of rotating nozzle and its parameters research [D]. Beijing, China: University of Science and Technology Beijing, 2007.
    [14] SOM S, AGGARWAL S K, EL-HANNOUNY E M, et al. Investigation of nozzle flow and cavitation characteristics in a diesel injector [J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(4): 042802. DOI: 10.1115/1.3203146.
    [15] 王迪. 高压水射流清洗的仿真研究及实验验证 [D]. 哈尔滨: 哈尔滨工业大学, 2014. DOI: 10.7666/d.D591195.

    WANG D. The simulation research and experimental verification on high pressure water jet cleaning [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2014. DOI: 10.7666/d.D591195.
    [16] 薛梅新, 吴迪, 朴英. 高压喷嘴内部空化流动的数值模拟研究 [J]. 工程力学, 2012, 29(10): 46–51. DOI: 10.6052/j.issn.1000-4750.2010.11.0822.

    XUE M X, WU D, PIAO Y. Numerical simulation of internal flow and cavitation of a diesel nozzle [J]. Engineering Mechanics, 2012, 29(10): 46–51. DOI: 10.6052/j.issn.1000-4750.2010.11.0822.
    [17] 刘辉, 马辉运, 曾立新, 等. 自旋转射流除垢喷头研制与性能测试 [J]. 钻采工艺, 2020, 43(S1): 72–75.

    LIU H, MA H Y, ZENG L X, et al. Development of self-rotating jet nozzle for scale removal and its performance test [J]. Drilling & Production Technology, 2020, 43(S1): 72–75.
    [18] 王正钦, 管华, 刘庭成. 高压水射流清洗技术中的旋转喷头 [J]. 清洗世界, 2007, 23(1): 31–34,38. DOI: 10.3969/j.issn.1671-8909.2007.01.008.

    WANG Z Q, GUAN H, LIU T C. Rotating nozzle for high pressure water-jet cleaning technology [J]. Cleaning World, 2007, 23(1): 31–34,38. DOI: 10.3969/j.issn.1671-8909.2007.01.008.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  159
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-10-25
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回