聚脲加固砖填充墙抗爆性能的试验和分析方法研究

许林峰 陈力 李展 岳承军

许林峰, 陈力, 李展, 岳承军. 聚脲加固砖填充墙抗爆性能的试验和分析方法研究[J]. 爆炸与冲击, 2022, 42(7): 075102. doi: 10.11883/bzycj-2021-0332
引用本文: 许林峰, 陈力, 李展, 岳承军. 聚脲加固砖填充墙抗爆性能的试验和分析方法研究[J]. 爆炸与冲击, 2022, 42(7): 075102. doi: 10.11883/bzycj-2021-0332
XU Linfeng, CHEN Li, LI Zhan, YUE Chengjun. Experimental and analytical study on blast resistance performance of brick infill walls strengthened with polyuria[J]. Explosion And Shock Waves, 2022, 42(7): 075102. doi: 10.11883/bzycj-2021-0332
Citation: XU Linfeng, CHEN Li, LI Zhan, YUE Chengjun. Experimental and analytical study on blast resistance performance of brick infill walls strengthened with polyuria[J]. Explosion And Shock Waves, 2022, 42(7): 075102. doi: 10.11883/bzycj-2021-0332

聚脲加固砖填充墙抗爆性能的试验和分析方法研究

doi: 10.11883/bzycj-2021-0332
基金项目: 国家自然科学基金(51978166);国家重点研发计划(2019YFC0706105)
详细信息
    作者简介:

    许林峰(1995- ),男,博士研究生,230199001@seu.edu.cn

    通讯作者:

    陈 力(1982- ),男,博士,教授,li.chen@seu.edu.cn

  • 中图分类号: O383; O389

Experimental and analytical study on blast resistance performance of brick infill walls strengthened with polyuria

  • 摘要: 为了掌握聚脲喷涂加固砖填充墙的抗爆特性,基于一种改进的大型爆炸试验装置,开展了聚脲加固框架砖填充墙的原型爆炸试验,分析了爆炸荷载作用下加固砖墙的动力响应特征和破坏过程及模式,揭示了其失效破坏机理。研究结果表明,聚脲加固可大幅提升填充墙构件的抗爆性能,显著增加填充墙构件的变形延性;加固砖墙受爆炸荷载作用发生振动的过程其体系刚度不断变化,最高相差133%;随着比例距离降低,加固砖墙的破坏模式逐渐由弯曲破坏转为剪切破坏,聚脲厚度超过6 mm可以有效限制局部剪切破坏现象;基于砖墙和聚脲涂层的抗力函数建立的理论计算模型,可以较为准确地预测爆炸作用下背爆面加固双向砖墙的正向位移响应过程。
  • 图  1  试验装置

    Figure  1.  Test device

    图  2  测试方案

    Figure  2.  Test scheme

    图  3  墙体试件破坏模式

    Figure  3.  Failure modes of wall specimens

    图  4  加固砖墙爆炸后背爆面涂层情况

    Figure  4.  Coatings of reinforcement brick wall after blasting

    图  5  试验荷载时程曲线

    Figure  5.  Curves of test load

    图  6  不同荷载作用下两种墙体的位移响应

    Figure  6.  Displacement responses of two walls under different loads

    图  7  背爆面加固作用机理

    Figure  7.  Mechanism of back burst surface strengthening

    图  8  不同振动位置砌块间受力

    Figure  8.  Force between blocks at different vibration positions

    图  9  试验现象[19]

    Figure  9.  Test phenomena [19]

    图  10  动载响应下聚脲涂层失效机理

    Figure  10.  Failure mechanism of polyurea coating under dynamic load response

    图  11  墙体结构弯曲变形示意

    Figure  11.  Deformation schematic of wall structure

    图  12  计算结果对比

    Figure  12.  Comparison of calculation results

    表  1  砖和砂浆的力学参数

    Table  1.   Material parameters of brick and mortar

    材料密度/(kg·m−3)杨氏模量/MPa泊松比抗拉强度/MPa剪切强度/MPa屈服强度/MPa
    12008970.155.55.514.1
    砂浆21009130.253.53.57.03
    下载: 导出CSV

    表  2  聚脲的力学参数

    Table  2.   Polyurea material parameters

    密度/(kg·m−3)杨氏模量/MPa泊松比抗拉强度/MPa屈服强度/MPa切线模量/MPa真实失效应变
    1150800.17155.514.11.2
    下载: 导出CSV

    表  3  试验工况

    Table  3.   Test conditions

    试验聚脲厚度/mm比例爆距/(m·kg−1/3)装药当量/kg
    101.89 4
    201.3910
    361.89 4
    461.3910
    下载: 导出CSV

    表  4  爆炸荷载验证

    Table  4.   Explosion load verification

    装药/kg冲量/(Pa·s)误差/%
    测点P1文献[17]方法
    430640023.5
    10824790 4.3
    下载: 导出CSV

    表  5  砌体墙的破坏准则[11]

    Table  5.   Failure criteria of masonry walls [11]

    破坏等级边界条件支座转角/(°)跨中允许挠度/mm
    可修复单向0.58.72
    双向0.58.72
    不可修复单向117.45
    双向234.90
    下载: 导出CSV

    表  6  本文与文献试验工况对比

    Table  6.   Comparison of test conditions between this paper and the literature

    工况聚脲厚度/mm装药/kg比例爆距/(m·kg−1/3)
    1[19]0, 350.584
    2[19]6, 650.35
    本文试验30, 641.89
    本文试验40, 610 1.39
    下载: 导出CSV
  • [1] 范俊余, 方秦, 陈力, 等. 砌体填充墙的抗爆性能 [J]. 爆炸与冲击, 2014, 34(1): 59–66. DOI: 10.11883/1001-1455(2014)01-0059-08.

    FAN J Y, FANG Q, CHEN L, et al. Anti-blast properties of masonry infill walls [J]. Explosion and Shock Waves, 2014, 34(1): 59–66. DOI: 10.11883/1001-1455(2014)01-0059-08.
    [2] SHI Y C, XIONG W, LI Z X, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. International Journal of Impact Engineering, 2016, 90: 122–131. DOI: 10.1016/j.ijimpeng.2015.12.002.
    [3] SARVA S S, DESCHANEL S, BOYCE M C, et al. Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates [J]. Polymer, 2007, 48(8): 2208–2213. DOI: 10.1016/j.polymer.2007.02.058.
    [4] RAMAN S N, NGO T, LU J, et al. Experimental investigation on the tensile behavior of polyurea at high strain rates [J]. Materials & Design, 2013, 50: 124–129. DOI: 10.1016/j.matdes.2013.02.063.
    [5] CHEN Y S, WANG B, ZHANG B, et al. Polyurea coating for foamed concrete panel: an efficient way to resist explosion [J]. Defence Technology, 2020, 16(1): 136–149. DOI: 10.1016/j.dt.2019.06.010.
    [6] DAVIDSON J S, FISHER J W, HAMMONS M I, et al. Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast [J]. Journal of Structural Engineering, 2005, 131(8): 1194–1205. DOI: 10.1061/(ASCE)0733-9445(2005)131:8(1194).
    [7] 蔡桂杰. 弹性体涂覆钢筋混凝土板抗爆作用设计方法研究 [D]. 太原: 中北大学, 2015.

    CAI G J. The design method of the reinforced concrete plate coated polyurea under the action of explosion [D]. Taiyuan: North University of China, 2015.
    [8] IQBAL N, SHARMA P K, KUMAR D, et al. Protective polyurea coatings for enhanced blast survivability of concrete [J]. Construction and Building Materials, 2018, 175: 682–690. DOI: 10.1016/j.conbuildmat.2018.04.204.
    [9] 王军国. 喷涂聚脲加固粘土砖砌体抗动载性能试验研究及数值分析 [D]. 合肥: 中国科学技术大学, 2017.

    WAMG J G. Experimental and numerical investigation of clay brick masonry walls strengthened with spary polyurea elastomer under blast loads [D]. Hefei: University of Science and Technology of China, 2017.
    [10] BIGGS J M. Introduction to structural dynamics [M]. New York: McGraw-Hill Companies, 1964.
    [11] US Department of Defence. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington DC: US Department of Defence, 2008.
    [12] URGESSA G S, MAJI A K. Dynamic response of retrofitted masonry walls for blast loading [J]. Journal of Engineering Mechanics, 2010, 136(7): 858–864. DOI: 10.1061/(ASCE)EM.1943-7889.0000128.
    [13] ABOU-ZEID B M, EL-DAKHAKHNI W W, RAZAQPUR A G, et al. Response of arching unreinforced concrete masonry walls to blast loading [J]. Journal of Structural Engineering, 2011, 137(10): 1205–1214. DOI: 10.1061/(ASCE)ST.1943-541X.0000344.
    [14] ABOU-ZEID B M, EL-DAKHAKHNI W W, RAZAQPUR A G, et al. Time-response analysis of arching unreinforced concrete block walls subjected to blast loads [J]. Journal of Structural Engineering, 2014, 140(4): 04013099. DOI: 10.1061/(ASCE)ST.1943-541X.0000893.
    [15] MORISON C M. Dynamic response of walls and slabs by single-degree-of-freedom analysis: a critical review and revision [J]. International Journal of Impact Engineering, 2006, 32(8): 1214–1247. DOI: 10.1016/j.ijimpeng.2004.11.008.
    [16] IRSHIDAT M, AL-OSTAZ A, CHENG A H D, et al. Nanoparticle reinforced polymer for blast protection of unreinforced masonry wall: laboratory blast load simulation and design models [J]. Journal of Structural Engineering, 2011, 137(10): 1193–1204. DOI: 10.1061/(ASCE)ST.1943-541X.0000361.
    [17] US Department of the Army. Fundamentals of protective design for conventional weapons: TM 5-855-1 [S]. Washington DC: Department of the Army, 1986.
    [18] 方秦. 地下防护结构 [M]. 北京: 中国水利水电出版社, 2010.
    [19] WU G, JI C, WANG X, et al. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer [J]. Defence Technology, 2022, 18(4): 20. DOI: 10.1016/j.dt.2021.03.004.
    [20] DENG Z, WANG X J. Analysis of sheet metal stress-strain relations in uniaxial and biaxial tension [J]. Journal of University of Science and Technology Beijing (English Edition), 1994, 1(1/2): 70–75.
    [21] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.

    WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2012.
    [22] 陈力, 方秦, 还毅, 等. 爆炸荷载作用下钢筋混凝土梁板结构的面力效应 [J]. 工程力学, 2010, 27(8): 156–163.

    CHEN L, FANG Q, HUAN Y, et al. Membrane action on reinforced concrete beam-slab structures subjected to blast loads [J]. Engineering Mechanics, 2010, 27(8): 156–163.
    [23] 彭培, 李展, 张亚栋, 等. 燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能 [J]. 爆炸与冲击, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.

    PENG P, LI Z, ZHANG Y D, et al. Performance of retrofitted autoclaved aerated concrete masonry walls subjected to gas explosions [J]. Explosion and Shock Waves, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.
    [24] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 152: 901–919. DOI: 10.1016/j.engstruct.2017.09.055.
    [25] LI Z, CHEN L, FANG Q, et al. Study of autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 141: 444–460. DOI: 10.1016/j.engstruct.2017.03.033.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  204
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 修回日期:  2021-09-22
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回