• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于红外热成像的编织复合材料低速冲击和冲击后压缩试验研究

刘鹏 蔡应龙 顾佳辉 罗维 张超

刘鹏, 蔡应龙, 顾佳辉, 罗维, 张超. 基于红外热成像的编织复合材料低速冲击和冲击后压缩试验研究[J]. 爆炸与冲击, 2022, 42(6): 063101. doi: 10.11883/bzycj-2021-0369
引用本文: 刘鹏, 蔡应龙, 顾佳辉, 罗维, 张超. 基于红外热成像的编织复合材料低速冲击和冲击后压缩试验研究[J]. 爆炸与冲击, 2022, 42(6): 063101. doi: 10.11883/bzycj-2021-0369
LIU Peng, CAI Yinglong, GU Jiahui, LUO Wei, ZHANG Chao. Experimental research on low-velocity impact and compression after impact of braided composites based on infrared thermal imaging[J]. Explosion And Shock Waves, 2022, 42(6): 063101. doi: 10.11883/bzycj-2021-0369
Citation: LIU Peng, CAI Yinglong, GU Jiahui, LUO Wei, ZHANG Chao. Experimental research on low-velocity impact and compression after impact of braided composites based on infrared thermal imaging[J]. Explosion And Shock Waves, 2022, 42(6): 063101. doi: 10.11883/bzycj-2021-0369

基于红外热成像的编织复合材料低速冲击和冲击后压缩试验研究

doi: 10.11883/bzycj-2021-0369
基金项目: 国家自然科学基金(12172303)
详细信息
    作者简介:

    刘 鹏(1995- ),男,硕士,peng.liu@mail.nwpu.edu.cn

    通讯作者:

    张 超(1987- ),男,博士,教授,chaozhang@nwpu.edu.cn

  • 中图分类号: O382; V258.3

Experimental research on low-velocity impact and compression after impact of braided composites based on infrared thermal imaging

  • 摘要: 针对二维三轴编织复合材料(two-dimensional triaxially braided composite, 2DTBC)在低速冲击和冲击后压缩(compression after impact, CAI)载荷下的损伤失效机理,开展了2DTBC试样的不同能量低速冲击试验以及相应的CAI试验,并采用红外热像仪监测在低速冲击和CAI试验过程中的温升现象。通过C扫描表征了不同能量低速冲击后试样的分层损伤情况,讨论了试样背面温度场分布特性及其随冲击能量的演化规律;对比分析了2DTBC冲击后剩余压缩强度与冲击能量的对应关系,基于数字图像相关(digital image correlation, DIC)技术监测了CAI试验中的全局应变场,结合热成像、变形场和光学图像数据,阐明了不同能量冲击后2DTBC的压缩失效特性,讨论了基于红外热成像技术表征编织复合材料损伤失效行为的有效性。试验结果显示:编织复合材料低速冲击和CAI试验中的温度场分布图与编织几何构型有明显关联度;低速冲击试验的温升幅值随冲击能量的增加而快速上升,CAI试验的温升现象随着冲击能量的增加而减弱;分层面积随冲击能量的增大而增大,冲击后剩余压缩强度随冲击能量的增大而降低。研究结果表明:红外热成像技术能够很好地捕捉试样破坏瞬间释放断裂能所产生的温升现象,温度场图像相较于全局应变场能更好地捕捉破坏的起始位置和失效特征。
  • 图  1  2DTBC试样及其编织构型

    Figure  1.  2DTBC specimen and its braided architecture

    图  2  低速冲击试验装置

    Figure  2.  Low-velocity impact test machine

    图  3  冲击后压缩试验装置

    Figure  3.  Compression-after-impact test machine

    图  4  4种载荷下试样的力学响应

    Figure  4.  Mechanical responses of specimens under four kinds of loads

    图  5  不同冲击能量下试样分层损伤分布

    Figure  5.  Delamination distribution of specimens under impact with different energies

    图  6  3种不同冲击能量下试样温度分布

    Figure  6.  Temperature distribution in specimens after impact with three energy levels

    图  7  低速冲击下试样的力学响应

    Figure  7.  Mechanical responses of specimens under low-velocity impact

    图  8  低速冲击下试样的温度响应

    Figure  8.  Temperature response of specimens under low-velocity impact

    图  9  在5 J能量冲击下2DTBC试样CAI试验的应力-应变曲线和其破坏前瞬间应变分布

    Figure  9.  Stress-strain curves of 2DTBC specimens under the impact with the energy of 5 J in CAI tests and strain distributions at the moment before destruction

    图  10  在10 J能量冲击下2DTBC试样CAI试验的应力-应变曲线和其破坏前瞬间应变分布

    Figure  10.  Stress-strain curves of 2DTBC specimens under the impact with the energy of 10 J in CAI tests and strain distributions at the moment before destruction

    图  11  在20 J能量冲击下2DTBC试样CAI试验的应力-应变曲线和其破坏前瞬间应变分布

    Figure  11.  Stress-strain curves of 2DTBC specimens under the impact with the energy of 20 J in CAI tests and strain distributions at the moment before destruction

    图  12  在30 J能量冲击下2DTBC试样CAI试验的应力-应变曲线和其破坏前瞬间应变分布

    Figure  12.  Stress-strain curves of 2DTBC specimens under the impact with the energy of 30 J in CAI tests and strain distributions at the moment before destruction

    图  13  CAI试验中试样温度场(上)和光学成像(下)

    Figure  13.  Temperature fields (up) and optical images (down) of specimens in CAI tests

    图  14  在30 J能量冲击下2DTBC试样不同时刻的温度分布

    Figure  14.  Temperature distribtuon at different times in 2DTBC specimens under the impact with the energy of 30 J

    图  15  CAI试验试样的力学响应

    Figure  15.  Mechanical responses of specimens in CAI tests

    图  16  CAI试验试样的温度响应

    Figure  16.  Temperature responses of specimens in CAI tests

    表  1  试样信息和冲击能量

    Table  1.   Sample information and impact energy

    序号冲击能量/J试件尺寸/(mm×mm×mm)试件质量/g
    1 5150.14×100.20×4.64104.4
    210149.62×98.10×4.48101.7
    320149.60×100.00×4.60105.3
    430149.66×98.32×4.56102.3
    下载: 导出CSV
  • [1] 范玉青, 张丽华. 超大型复合材料机体部件应用技术的新进展: 飞机制造技术的新跨越 [J]. 航空学报, 2009, 30(3): 534–543. DOI: 10.3321/j.issn:1000-6893.2009.03.022.

    FAN Y Q, ZHANG L H. New development of extra large composite aircraft components application technology-advance of aircraft manufacture technology [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 534–543. DOI: 10.3321/j.issn:1000-6893.2009.03.022.
    [2] ASTM Committee D30 on Composite Materials. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—15 [S]. West Conshohocken, PA, United States: ASTM International, 2015.
    [3] ASTM Committee D30 on Composite Materials. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137M—17 [S]. West Conshohocken, PA, United States: ASTM International, 2017.
    [4] Technical Committee PRI/42. Carbon-fibre-reinforced plastics: determination of compression-after-impact properties at a specified impact-energy level: BS ISO 18352: 2009 [S]. Switzerland: International Organization for Standardization, 2009.
    [5] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 纤维增强塑料层合板冲击后压缩性能试验方法: GB/T 21239—2007 [S]. 北京: 质检出版社, 2007.
    [6] TUO H L, LU Z X, MA X P, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions [J]. Composites Part B: Engineering, 2019, 163: 642–654. DOI: 10.1016/j.compositesb.2019.01.006.
    [7] JOHNSTON J P, PEREIRA J M, RUGGERI C R, et al. High-speed infrared thermal imaging during ballistic impact of triaxially braided composites [J]. Journal of Composite Materials, 2018, 52(25): 3549–3562. DOI: 10.1177/0021998318765290.
    [8] ZHANG W, GU B H, SUN B Z. Thermal-mechanical coupling modeling of 3D braided composite under impact compression loading and high temperature field [J]. Composites Science and Technology, 2017, 140: 73–88. DOI: 10.1016/j.compscitech.2016.12.019.
    [9] PAN Z X, WU Z Y, XIONG J. High-speed infrared imaging and mesostructural analysis of localized temperature rise in damage and failure behavior of 3-D braided carbon/epoxy composite subjected to high strain-rate compression [J]. Polymer Testing, 2019, 80: 106151. DOI: 10.1016/j.polymertesting.2019.106151.
    [10] SORINI C, CHATTOPADHYAY A, GOLDBERG R K. Micromechanical modeling of the effects of adiabatic heating on the high strain rate deformation of polymer matrix composites [J]. Composite Structures, 2019, 215: 377–384. DOI: 10.1016/j.compstruct.2019.02.016.
    [11] LI Z Y, GHOSH S. Micromechanics modeling and validation of thermal-mechanical damage in DER353 epoxy/borosilicate glass composite subject to high strain rate deformation [J]. International Journal of Impact Engineering, 2020, 136: 103414. DOI: 10.1016/j.ijimpeng.2019.103414.
    [12] 刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法 [J]. 爆炸与冲击, 2014, 34(4): 471–475. DOI: 10.11883/1001-1455(2014)04-0471-05.

    LIU Y G, TANG Z P, CUI S T. Real-time measuring methods for transient temperature under shock loading [J]. Explosion and Shock Waves, 2014, 34(4): 471–475. DOI: 10.11883/1001-1455(2014)04-0471-05.
    [13] 刘永贵, 唐志平, 崔世堂. TiNi合金冲击相变过程中温度变化规律的实验研究 [J]. 爆炸与冲击, 2014, 34(6): 679–684. DOI: 10.11883/1001-1455(2014)06-0679-06.

    LIU Y G, TANG Z P, CUI S T. Experimental study on temperature evolution of TiNi alloy during shock-induced phase transformation [J]. Explosion and Shock Waves, 2014, 34(6): 679–684. DOI: 10.11883/1001-1455(2014)06-0679-06.
    [14] 李涛, 傅华, 李克武, 等. 单轴压缩下2种PBX炸药的动态变形损伤及其温升效应 [J]. 爆炸与冲击, 2017, 37(1): 120–125. DOI: 10.11883/1001-1455(2017)01-0120-06.

    LI T, FU H, LI K W, et al. Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression [J]. Explosion and Shock Waves, 2017, 37(1): 120–125. DOI: 10.11883/1001-1455(2017)01-0120-06.
    [15] 李茜. 冲击载荷下复合材料的损伤模型适用性研究 [D]. 西安: 西北工业大学, 2018.

    LI X. Comparison of different damage models for laminated composites under impact loading [D]. Xi’an, Shaanxi, China: Northwestern Polytechnical University, 2018.
    [16] 朱炜垚, 许希武. 含低速冲击损伤复合材料层合板剩余压缩强度及疲劳性能试验研究 [J]. 复合材料学报, 2012, 29(5): 171–178. DOI: 10.13801/j.cnki.fhclxb.2012.05.025.

    ZHU W Y, XU X W. Experiment research on residual compressive strength and fatigue performance of composite laminates with low velocity impact damage [J]. Acta Materiae Compositae Sinica, 2012, 29(5): 171–178. DOI: 10.13801/j.cnki.fhclxb.2012.05.025.
    [17] 严实, 郭留雨, 赵金阳, 等. 三维五向编织复合材料低速冲击及冲击后压缩性能实验研究 [J]. 材料工程, 2017, 45(12): 65–70. DOI: 10.11868/j.issn.1001-4381.2015.000861.

    YAN S, GUO L Y, ZHAO J Y, et al. Experimental investigation on low-velocity impact and compression after impact properties of three-dimensional five-directional braided composites [J]. Journal of Materials Engineering, 2017, 45(12): 65–70. DOI: 10.11868/j.issn.1001-4381.2015.000861.
    [18] 刘丽敏, 孙颖, 李涛涛, 等. 芳纶/炭混编三维编织复合材料冲击后压缩性能实验研究 [J]. 固体火箭技术, 2016, 39(6): 803–808. DOI: 10.7673/j.issn.1006-2793.2016.06.012.

    LIU L M, SUN Y, LI T T, et al. Experimental investigation on the compression properties of Kevlar/carbon hybrid 3D braided composites after impact [J]. Journal of Solid Rocket Technology, 2016, 39(6): 803–808. DOI: 10.7673/j.issn.1006-2793.2016.06.012.
    [19] MARSH G. Aero engines lose weight thanks to composites [J]. Reinforced Plastics, 2012, 56(6): 32–35. DOI: 10.1016/S0034-3617(12)70146-7.
    [20] MCGREGOR C, VAZIRI R, XIAO X R. Finite element modelling of the progressive crushing of braided composite tubes under axial impact [J]. International Journal of Impact Engineering, 2010, 37(6): 662–672. DOI: 10.1016/j.ijimpeng.2009.09.005.
    [21] ROBERTS G D, PEREIRA J M, REVILOCK D M, et al. Ballistic impact of braided composites with a soft projectile [J]. Journal of Aerospace Engineering, 2005, 18(1): 3–7. DOI: 10.1061/(ASCE)0893-1321(2005)18:1(3).
    [22] PEREIRA J M, ROBERTS G D, RUGGERI C R, et al. Experimental techniques for evaluating the effects of aging on impact and high strain rate properties of triaxial braided composite materials: NASA/TM-2010-216763 [R]. Austin: NASA, 2010.
    [23] LIU L L, XUAN H J, CHEN G T, et al. Ballistic impact testing and analysis of triaxial braided composite fan case material [J]. Advanced Materials Research, 2012, 535/356/537: 121–132. DOI: 10.4028/www.scientific.net/AMR.535-537.121.
    [24] CHENG J Y. Material modeling of strain rate dependent polymer and 2D triaxially braided composites [D]. Akron, Ohio, USA: University of Akron, 2006.
    [25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 三维编织物及其树脂基复合材料压缩性能试验方法: GB/T 33614—2017 [S]. 北京: 质检出版社, 2017.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  50
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2022-01-04
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回