考虑尺寸效应的典型钻地弹侵彻混凝土深度分析

程月华 姜鹏飞 吴昊 谭可可 方秦

程月华, 姜鹏飞, 吴昊, 谭可可, 方秦. 考虑尺寸效应的典型钻地弹侵彻混凝土深度分析[J]. 爆炸与冲击, 2022, 42(6): 063302. doi: 10.11883/bzycj-2021-0373
引用本文: 程月华, 姜鹏飞, 吴昊, 谭可可, 方秦. 考虑尺寸效应的典型钻地弹侵彻混凝土深度分析[J]. 爆炸与冲击, 2022, 42(6): 063302. doi: 10.11883/bzycj-2021-0373
CHENG Yuehua, JIANG Pengfei, WU Hao, TAN Keke, FANG Qin. On penetration depth of typical earth-penetrating projectilesinto concrete targets considering the scaling effect[J]. Explosion And Shock Waves, 2022, 42(6): 063302. doi: 10.11883/bzycj-2021-0373
Citation: CHENG Yuehua, JIANG Pengfei, WU Hao, TAN Keke, FANG Qin. On penetration depth of typical earth-penetrating projectilesinto concrete targets considering the scaling effect[J]. Explosion And Shock Waves, 2022, 42(6): 063302. doi: 10.11883/bzycj-2021-0373

考虑尺寸效应的典型钻地弹侵彻混凝土深度分析

doi: 10.11883/bzycj-2021-0373
基金项目: 国家自然科学基金(52078379)
详细信息
    作者简介:

    程月华(1994- ),女,博士研究生,yhcheng@tongji.edu.cn

    通讯作者:

    吴 昊(1981- ),男,博士,教授,wuhaocivil@tongji.edu.cn

  • 中图分类号: O385

On penetration depth of typical earth-penetrating projectilesinto concrete targets considering the scaling effect

  • 摘要: 准确评估精确制导武器的侵彻深度可为防护工程设计提供重要参考。已有研究工作大多集中于中、小口径弹体和普通强度混凝土靶体,且由于尺寸效应的影响使得现有计算方法对预测大口径典型钻地弹侵彻深度的适用性值得商榷。首先,综合分析了已有弹体侵彻试验数据,发现引起侵彻深度尺寸效应的主要原因是混凝土粗骨料粒径未随弹体尺寸进行同比缩放;其次,开展了5发100.0和203.0 mm口径缩比钻地弹侵彻C40和C100混凝土的试验和数值模拟分析,提出并验证了大口径弹体侵彻混凝土深度的实用化有限元计算方法;然后,确定了美军5种典型钻地弹在不同侵彻速度(100~600 m/s)下对上述2种强度混凝土靶体的侵彻深度,并对现有7种计算公式的适用性进行了评估;最后,基于已有大量试验数据拟合确定了侵彻深度随混凝土强度的衰减规律,并计算得到340 m/s侵彻速度下5种典型钻地弹对C40~C200混凝土的侵彻深度。
  • 图  1  试验弹体[28]

    Figure  1.  Test projectiles[28]

    图  2  几何相似弹体无量纲侵彻深度随弹径的变化[28]

    Figure  2.  Non-dimensional penetration depths of geometrically similar projectiles varying with projectile diameter[28]

    图  3  试验数据[29-30]与Forrestal公式[15]对比结果

    Figure  3.  Comparisons of test data[29-30] and Forrestal formula[15]

    图  4  Canfield等[31]侵彻试验数据

    Figure  4.  Penetration test data by Canfield, et al[31]

    图  5  徐建波[32]侵彻试验数据

    Figure  5.  Penetration test data by Xu Jianbo[32]

    图  6  试验弹体[26-27]

    Figure  6.  Test projectiles[26-27]

    图  7  弹体几何尺寸(单位:mm)

    Figure  7.  Geometrical sizes of the projectiles (unit: mm)

    图  8  典型的试验布置及弹靶损伤

    Figure  8.  Typical test setup, and damaged targets and projectiles

    图  9  二维轴对称有限元模型

    Figure  9.  Two-dimensional axisymmetric finite element model

    图  10  数值模拟结果与试验结果对比

    Figure  10.  Comparison of the numerical simulation and test results

    图  11  C40混凝土中5种战斗部的无量纲侵彻深度

    Figure  11.  Non-dimensional penetration depths of five warheads into C40 concrete

    图  12  C100混凝土中5种战斗部无量纲侵彻深度

    Figure  12.  Non-dimensional penetration depths of five warheads into C100 concrete

    图  13  Kq$ {f'_{\text{c}}} $之间的关系

    Figure  13.  Relationship between Kq and$ {f'_{\text{c}}} $

    图  14  不同混凝土强度等级下5种战斗部的侵彻深度

    Figure  14.  Penetration depths of five warheads into the concrete of different strengths

    表  1  试验结果

    Table  1.   Test results

    试验编号f/MPad/mmM/kgv0/(m·s−1P/m
    1 40100.017.35030.86
    2 40105.020.13250.52
    3100100.017.33570.35
    4100100.017.35100.51
    5100203.0145.0 3600.87
    下载: 导出CSV

    表  2  5种战斗部参数

    Table  2.   Parameters of five warheads

    战斗部d/mmM/kgL/mmw/mmψ
    BLU-109B368.38742 40025.43
    BLU-113368.31 9963 88658.03
    BLU-122389.02 0184 03844.5
    WDU-43B234.04542 40041.59
    SDB150.01291 80010.83
    下载: 导出CSV
  • [1] PETRY L. Monographies de systemes d’Artillerie [M]. Brussels, Belgium: Cans et Compagnie, 1910.
    [2] GWALTNEY R C. Missile generation and protection in light-water-cooled power reactor plants: ORNL-NSIC-22 [R]. Oak Ridge, USA: Oak Ridge National Laboratory, 1968.
    [3] Army Corps of Engineers. Fundamentals of protective design: AT1207821 [R]. Pennsylvania, USA: Office of the Chief of Engineers, 1946.
    [4] National Defense Research Committee. Effects of impact and explosion: summary technical report of division 2, vol. 1 [R]. Washington, USA: National Defense Research Committee, 1946.
    [5] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. DOI: 10.1016/0029-5493(76)90015-7.
    [6] WHIFFEN P. UK road research laboratory: MOS/311 [R]. 1943.
    [7] KAR A K. Local effects of tornado-generated missiles [J]. Journal of the Structural Division, 1978, 104(5): 809–816. DOI: 10.1061/JSDEAG.0004915.
    [8] BARR P. Guidelines for the design and assessment of concrete structures subjected to impact [R]. London, UK: UK Atomic Energy Authority, Safety and Reliability Directorate, 1990.
    [9] HALDAR A, HAMIEH H A. Local effect of solid missiles on concrete structures [J]. Journal of Structural Engineering, 1984, 110(5): 948–960. DOI: 10.1061/(ASCE)0733-9445(1984)110:5(948).
    [10] ADELI H, AMIN A M. Local effects of impactors on concrete structures [J]. Nuclear Engineering and Design, 1985, 88(3): 301–317. DOI: 10.1016/0029-5493(85)90165-7.
    [11] HUGHES G. Hard missile impact on reinforced concrete [J]. Nuclear Engineering and Design, 1984, 77(1): 23–35. DOI: 10.1016/0029-5493(84)90058-X.
    [12] BANGASH M Y H. Concrete and concrete structures: numerical modelling and application [M]. London, UK: Elsevier Applied Science, 1989.
    [13] BANGASH M Y H. Impact and explosion: structural analysis and design [R]. Boca Raton, USA: CRC Press, 1993.
    [14] CHANG W S. Impact of solid missiles on concrete barriers [J]. Journal of the Structural Division, 1981, 107(2): 257–271. DOI: 10.1061/JSDEAG.0005640.
    [15] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743x(94)80024-4.
    [16] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [17] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
    [18] ROSENBERG Z, DEKEL E. The deep penetration of concrete targets by rigid rods-revisited [J]. International Journal of Protective Structures, 2010, 1(1): 125–144. DOI: 10.1260/2041-4196.1.1.125.
    [19] ROSENBERG Z, KOSITSKI R. Modeling the penetration and perforation of concrete targets by rigid projectiles [J]. International Journal of Protective Structures, 2016, 7(2): 157–178. DOI: 10.1177/2041419616632422.
    [20] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C]//Proceedings of the 14th International Symposium on Ballistic. Quebec, Canada: American Defense Preparedness Association, 1993: 591−600.
    [21] TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
    [22] REIDEL W, THORMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500, numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Berlin-Strausberg, Germany, 1999: 315−322.
    [23] KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [24] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
    [25] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [26] 邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究 [J]. 爆炸与冲击, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.

    DENG Y J, CHEN X W, ZHONG W Z, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target [J]. Explosion and Shock Waves, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.
    [27] 马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.

    MA T B, WU J, NING J G. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete [J]. Explosion and Shock Waves, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.
    [28] 吴飚, 任辉启, 陈力, 等. 弹体侵彻混凝土尺度效应试验研究与理论分析 [J]. 防护工程, 2020, 42(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.02.001.

    WU B, REN H Q, CHEN L, et al. Experimental study and theoretical analysis of size effect on projectile penetrating concrete [J]. Protective Engineering, 2020, 42(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.02.001.
    [29] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [30] FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
    [31] CANFIELD J A, CLATOR I G. Development of a scaling law and techniques to investigate penetration in concrete: NWL Report No. 2057 [R]. Dahlgren, VA, USA: US Naval Weapons Laboratory, 1966.
    [32] 徐建波. 长杆射弹对混凝土的侵彻特性研究 [D]. 长沙: 国防科学技术大学, 2001.

    XU J B. Investigations on long projectiles penetrating into concrete targets [D]. Changsha, Hunan, China: National University of Defense Technology, 2001.
    [33] WU H, LI Y C, FANG Q, et al. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses [J]. Construction and Building Materials, 2019, 208: 506–524. DOI: 10.1016/j.conbuildmat.2019.03.040.
    [34] 彭永, 卢芳云, 方秦, 等. 弹体侵彻混凝土靶体的尺寸效应分析 [J]. 爆炸与冲击, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.

    PENG Y, LU F Y, FANG Q, et al. Analyses of the size effect for projectile penetrations into concrete targets [J]. Explosion and Shock Waves, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.
    [35] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [36] 黄蒙, 欧卓成, 段卓平, 等. 刚性弹体侵彻混凝土的相似性研究 [J]. 兵工学报, 2016, 37(S2): 176–180.

    HUANG M, OU Z C, DUAN Z P, et al. A study of similarity analysis of hard projectile penetrating into concrete [J]. Acta Armamentarii, 2016, 37(S2): 176–180.
    [37] GOMEZ J T, SHUKLA A. Multiple impact penetration of semi-infinite concrete [J]. International Journal of Impact Engineering, 2001, 25(10): 965–979. DOI: 10.1016/S0734-743X(01)00029-X.
    [38] 石志勇. 长杆射弹侵彻两种混凝土靶的特性研究 [D]. 长沙: 国防科学技术大学, 2002.

    SHI Z Y. Study on the characteristics of long-rod projectile penetrating two kinds of concrete targets [D]. Changsha, Hunan, China: National University of Defense Technology, 2002.
    [39] 蒋荣峰. 动能侵彻弹侵彻混凝土技术研究 [D]. 成都: 四川大学, 2003.

    JIANG R F. Techniques of kinetic energy projectile penetrating into the concrete [D]. Chengdu, Sichuan, China: Sichuan University, 2003.
    [40] 顾晓辉, 王晓鸣, 陈惠武, 等. 动能弹低速垂直侵彻钢筋混凝土的试验研究 [J]. 南京理工大学学报, 2006, 30(1): 1–4. DOI: 10.14177/j.cnki.32-1397n.2006.01.001.

    GU X H, WANG X M, CHEN H W, et al. Experimental studies on kinetic projectile’s direct penetrations with low-speed against reinforced concrete targets [J]. Journal of Nanjing University of Science and Technology, 2006, 30(1): 1–4. DOI: 10.14177/j.cnki.32-1397n.2006.01.001.
    [41] 孙传杰, 卢永刚, 张方举, 等. 新型头形弹体对混凝土的侵彻 [J]. 爆炸与冲击, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.

    SUN C J, LU Y G, ZHANG F J, et al. Penetration of cylindrical-nose-tip projectiles into concrete targets [J]. Explosion and Shock Waves, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.
    [42] 邓云飞, 崔亚男, 慕忠成, 等. 卵形头弹体对素混凝土高速侵彻的实验研究 [J]. 应用力学学报, 2019, 36(5): 1144–1151.

    DENG Y F, CUI Y N, MU Z C, et al. An experimental investigation of ogive-nosed projectiles penetration into plain concrete at high velocities [J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1144–1151.
    [43] 林圣灵. 弹丸侵彻混凝土靶实验及仿真 [D]. 北京: 北京理工大学, 2016.

    LIN S L. Experiment and simulation of projectile penetrating concrete target [D]. Beijing, China: Beijing Institute of Technology, 2016.
    [44] 梁斌. 动能攻坚战斗部对混凝土靶侵爆效应研究 [D]. 四川绵阳: 中国工程物理研究院, 2009.

    LIANG B. Study on the penetration and blasting damage of concrete for anti-hard-target warhead [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2009.
    [45] 张广乐. 高速杆弹侵彻混凝土效应研究 [D]. 南京: 南京理工大学, 2011.

    ZHANG G L. Study on the effects of high-speed long rod projectile penetrating concrete [D]. Nanjing, Jiangsu, China: Nanjing Institute of Technology, 2011.
    [46] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
    [47] 庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻混凝土效应试验研究 [J]. 兵工学报, 2015, 36(1): 46–52. DOI: 10.3969/j.issn.1000-1093.2015.01.007.

    PANG C X, HE Y, SHEN X J, et al. Experimental investigation on penetration of grooved projectiles into concrete targets [J]. Acta Armamentarii, 2015, 36(1): 46–52. DOI: 10.3969/j.issn.1000-1093.2015.01.007.
    [48] 胡玉涛, 柯明, 杨慧, 等. 弹体侵彻混凝土靶侵蚀实验研究 [C]//中国力学大会论文集(CCTAM 2019). 杭州: 中国力学学会, 2019.
    [49] 赵晓宁. 高速弹体对混凝土侵彻效应研究 [D]. 南京: 南京理工大学, 2011.

    ZHAO X N. Study on the effect of projectiles high-velocity normal penetrating into concrete targets [D]. Nanjing, Jiangsu, China: Nanjing Institute of Technology, 2011.
    [50] 柴传国. 异形头部弹体对混凝土靶的侵彻效应研究 [D]. 北京: 北京理工大学, 2014.

    CHAI C G. Study on the mechanism of penetration into concrete of nose headed projectile [D]. Beijing, China: Beijing Institute of Technology, 2014.
    [51] 郭磊, 何勇, 潘绪超, 等. 高速侵彻混凝土弹体侵蚀效应试验研究 [J]. 实验力学, 2020, 35(1): 82–90. DOI: 10.7520/1001-4888-18-182.

    GUO L, HE Y, PAN X C, et al. Experimental study on mass loss of projectile subjected to high-velocity penetration into concrete target [J]. Journal of Experimental Mechanics, 2020, 35(1): 82–90. DOI: 10.7520/1001-4888-18-182.
    [52] 陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(Ⅲ):缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.

    CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of EPW (Ⅲ): investigations on the reduced-scale tests [J]. Explosion and Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.
    [53] 黄民荣. 刚性弹体对混凝土靶的侵彻与贯穿机理研究 [D]. 南京: 南京理工大学, 2011.

    HUANG M R. Penetration and perforation mechanism of rigid projectile into the concrete target [D]. Nanjing, Jiangsu, China: Nanjing Institute of Technology, 2011.
    [54] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual volume Ⅱ: material models [M]. Livermore, USA: Livermore Software Technology Corporation, 2012.
    [55] BORRVALL T, RIEDEL W. The RHT concrete model in LS-DYNA [C]//Proceedings of the 8th European LS-DYNA Users Conference. Strasbourg, France: Springer, 2011.
    [56] 甄建伟, 曹凌宇, 孙福. 弹药毁伤效应数值仿真技术 [M]. 北京: 北京理工大学出版社, 2018.

    ZHEN J W, CAO L Y, SUN F. Numerical simulation of ammunition damage effect [M]. Beijing, China: Beijing Institute of Technology Press, 2018.
    [57] 严平, 谭波, 苗润, 等. 战斗部及其毁伤原理 [M]. 北京: 国防工业出版社, 2020.

    YAN P, TAN B, MIAO R, et al. Warhead and its damage principle [M]. Beijing, China: National Defense Industry Press, 2020.
    [58] PENG Y, WU H, FANG Q, et al. Geometrical scaling effect for penetration depth of hard projectiles into concrete targets [J]. International Journal of Impact Engineering, 2018, 120: 46–59. DOI: 10.1016/j.ijimpeng.2018.05.010.
    [59] O’NEIL E F, NEELEY B D, CARGILE J D. Tensile properties of very-high-strength concrete for penetration-resistant structures [J]. Shock and Vibration, 1999, 6(5/6): 237–245. DOI: 10.1155/1999/415360.
    [60] ZHANG M H, SHARIF M S H, LU G. Impact resistance of high-strength fibre-reinforced concrete [J]. Magazine of Concrete Research, 2007, 59(3): 199–210. DOI: 10.1680/macr.2007.59.3.199.
    [61] LANGBERG H, MARKESET G. High performance concrete penetration resistance and material development [C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Norway: Norwegian Defense Construction Service, 1999.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  391
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-11-15
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回