高速列车车轮踏面剥离引起的轮轨冲击力学响应有限元模拟

王金能 郭鑫 敬霖 王开云

王金能, 郭鑫, 敬霖, 王开云. 高速列车车轮踏面剥离引起的轮轨冲击力学响应有限元模拟[J]. 爆炸与冲击, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374
引用本文: 王金能, 郭鑫, 敬霖, 王开云. 高速列车车轮踏面剥离引起的轮轨冲击力学响应有限元模拟[J]. 爆炸与冲击, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374
WANG Jinneng, GUO Xin, JING Lin, WANG Kaiyun. Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains[J]. Explosion And Shock Waves, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374
Citation: WANG Jinneng, GUO Xin, JING Lin, WANG Kaiyun. Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains[J]. Explosion And Shock Waves, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374

高速列车车轮踏面剥离引起的轮轨冲击力学响应有限元模拟

doi: 10.11883/bzycj-2021-0374
基金项目: 国家自然科学基金(11772275, 12122211);西南交通大学牵引动力国家重点实验室自主课题(2019TPL-T11)
详细信息
    作者简介:

    王金能(1997- ),男,硕士研究生,wangjinneng_tpl@163.com

    通讯作者:

    敬 霖(1984- ),男,博士,研究员,博士生导师,jinglin@swjtu.edu.cn

  • 中图分类号: O347.2; U211.5

Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains

  • 摘要: 车轮踏面剥离是轨道车辆车轮非圆化损伤的常见形式之一。轮轨滚动接触过程中,车轮踏面剥离会循环冲击钢轨,诱发异常大的轮轨动态相互作用,严重影响高速列车运行平稳性和安全性。基于三维轮轨滚动接触有限元模型,模拟了高速列车车轮踏面剥离引起的轮轨冲击力学响应,分析了轮轨冲击过程中的轮轨接触力/压力、接触斑及黏/滑特性、钢轨表面节点速度分布和应力/应变状态等响应特征,讨论了列车速度、剥离长度和剥离深度等关键参数对轮轨冲击响应的影响。结果发现,车轮踏面剥离引起的轮轨动态垂向接触力随列车速度的提高呈现出先增大后减小的变化趋势,并在列车速度为300 km/h出现最大值,约为轮轨准静态垂向接触力的1.35倍;随着剥离长度的增大,轮轨动态接触力、轮/轨von Mises应力和等效塑性应变均显著增大;随着剥离深度的增大,仅车轮von Mises应力和等效塑性应变显著增大。
  • 图  1  车轮踏面剥离现场图片(左图[6],右图[7]

    Figure  1.  Pictures of wheel tread spalling (left picture[6], right picture[7])

    图  2  三维轮轨滚动接触有限元模型

    Figure  2.  Three dimention finite element model of wheel-rail rolling contact

    图  3  隐式-显式序列求解示意图

    Figure  3.  Schematic diagram of the implicit-explicit sequence solution method

    图  4  不同列车速度下的轮轨接触力时程曲线

    Figure  4.  Time history curves of the wheel-rail contact forcesat different train speeds

    图  5  轮轨接触力时程曲线

    Figure  5.  Time history curves of the wheel-rail contact forces

    图  6  轮轨沿z向的瞬态速度分布

    Figure  6.  Wheel-rail velocity distribution along the z direction

    图  7  不同时刻的轮轨接触状态

    Figure  7.  Wheel-rail contact states at different times

    图  8  接触斑内不同时刻的黏/滑状态分布

    Figure  8.  Distributions of the adhesion-slip areas at different times

    图  9  钢轨表面节点沿xy平面的速度分布

    Figure  9.  Velocity distributions of rail surface nodes in the xy plane

    图  10  不同时刻轮/轨von Mises应力等值线图

    Figure  10.  Contours of the von Mises stresses of the wheel-rail at different times

    图  11  轮轨等效塑性应变云图

    Figure  11.  Contours of the equivalent plastic strain of the wheel-rail

    图  12  不同列车速度下含剥离侧的轮轨接触力

    Figure  12.  Wheel-rail contact forces on the spalling side at different train speeds

    图  13  最大轮轨接触力与列车速度的关系

    Figure  13.  Relationships between the maximum wheel-rail contact forces and train speed

    图  14  轮轨最大von Mises应力和最大等效塑性应变与列车速度的关系

    Figure  14.  Relationships between the maximum von Mises stress and maximum equivalent plastic strain of the wheel-rail vs. the train speed

    图  15  不同剥离长度下含剥离侧轮轨接触力

    Figure  15.  Wheel-rail contact forces on the spalling side at different spalling lengths

    图  16  最大轮轨接触力与剥离长度的关系

    Figure  16.  Relationships between the maximum wheel-rail contact forces vs. the spalling length

    图  17  轮轨最大von Mises应力和最大等效塑性应变与剥离长度的关系

    Figure  17.  Relationships between the maximum von Mises stress and maximum equivalent plastic strain of the wheel-rail vs. the spalling length

    图  18  不同工况下轮对右侧轮轨接触力时程曲线

    Figure  18.  Time history curves of the wheel-rail contact forces on the right side of wheelset under different conditions

    图  19  轮轨最大von Mises应力和最大等效塑性应变与剥离深度的关系

    Figure  19.  Relationships between the maximum von Mises stress and maximum equivalent plastic strainof the wheel-rail vs. the spalling depth

    表  1  CRH系列各型动车组车轮踏面剥离镟修限度[20]

    Table  1.   Damage tolerances of wheel tread spalling of various types of CRH series EMUs[20]

    一级修程 二级修程适用车型备注
    长度/mm深度/mm面积/mm2长度/mm深度/mm面积/mm2
    ≤25≤1.5<25<1.5CRH1A/B/E
    ≤20≤20CRH2A/B/E/C1一处剥离
    ≤10≤10二处剥离
    ≤30≤0.25≤30≤0.25CRH2C2/2G/380AL/6A/6F车轮直径>840 mm
    ≤25≤0.25≤25≤0.25车轮直径≤840 mm
    ≤20≤0.5≤200≤20≤0.5≤200CRH3C/380B/380BL/380CL
    ≤20≤0.75≤150≤20≤0.75≤150
    ≤20≤1.0≤100≤20≤1.0≤100
    ≤20≤1.5≤100≤20≤1.5≤100CRH5A/5G/5E
    下载: 导出CSV

    表  2  轮轨系统各部件的力学性能参数[25]

    Table  2.   Material parameters of the wheel-rail system components[25]

    部位弹性模量
    E/GPa
    密度
    ρ/(kg·m−3
    泊松比
    ν
    屈服强度
    σs/MPa
    切线模量
    Et/GPa
    轮辋213.0078000.30056121
    轮辐216.0078000.30039521
    轮毂213.0078000.30041721
    车轴206.0078000.30056020
    钢轨193.0078000.30052519
    轨道板36.5025000.167
    砂浆层7.0018000.200
    底座34.0024000.200
    路基0.1922500.200
    下载: 导出CSV

    表  3  轮轨系统相关参数[22]

    Table  3.   Parameters related to the wheel-rail system[22]

    参数簧上质量
    M/kg
    一系悬挂刚度系数
    Kc/(kN·m−1
    一系悬挂阻尼
    Cc/(kN·s·m−1
    扣件刚度系数
    Kf/(MN·m−1
    扣件阻尼
    Cf/(kN·s·m−1
    轮轨阻尼常数
    β/ms
    摩擦因数
    f
    牵引系数
    μ
    数值95808804222000.10.50.3
    下载: 导出CSV

    表  4  不同时刻的轮轨接触响应

    Table  4.   Wheel-rail contact responses at different times

    t/ms轮轨接触力/kN接触位置轮轨接触斑/mm2轮轨最大接触压力/MPa
    垂向纵向黏着区滑动区总面积车轮钢轨
    22.299.630.1146111257685.0 576.3
    22.768.921.3左侧294978759.5 759.9
    右侧6644110848.6 785.1
    23.397.224.7左侧504090897.9 951.8
    右侧9237129989.81005.9
    23.8121.037.0159106265817.9 890.7
    下载: 导出CSV
  • [1] 敬霖, 韩亮亮, 周彭滔. 基于SPH方法铁路车轴遭受道砟撞击的数值模拟 [J]. 爆炸与冲击, 2018, 38(3): 603–615. DOI: 10.11883/bzycj-2016-0265.

    JING L, HAN L L, ZHOU P T. A numerical simulation of railway axles subjected to ballast impact based on SPH method [J]. Explosion and Shock Waves, 2018, 38(3): 603–615. DOI: 10.11883/bzycj-2016-0265.
    [2] 李志强, 赵隆茂. 铁路车辆/轨道耦合系统在竖向冲击载荷作用下动态响应的计算机模拟研究 [J]. 应用力学学报, 2007, 24(1): 79–82. DOI: 10.3969/j.issn.1000-4939.2007.01.017.

    LI Z Q, ZHAO L M. Computational simulation to dynamic response of vehicle and track coupling system under vertical impact loading [J]. Chinese Journal of Applied Mechanics, 2007, 24(1): 79–82. DOI: 10.3969/j.issn.1000-4939.2007.01.017.
    [3] 孙伟, 王建国, 姜绍飞. 减小高速列车荷载对地面结构损害的数值分析 [J]. 爆炸与冲击, 2009, 29(2): 155–161. DOI: 10.11883/1001-1455(2009)02-0155-07.

    SUN W, WANG J G, JIANG S F. Reduction of high-speed train-induced building vibrations by protective trenches [J]. Explosion and Shock Waves, 2009, 29(2): 155–161. DOI: 10.11883/1001-1455(2009)02-0155-07.
    [4] JING L, LIU Z, LIU K. A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness [J]. Vehicle System Dynamics, 2020. DOI: 10.1080/00423114.2020.1815809.
    [5] 张斌, 付秀琴. 铁路车轮、轮箍踏面剥离的类型及形成机理 [J]. 中国铁道科学, 2001, 22(2): 73–78. DOI: 10.3321/j.issn:1001-4632.2001.02.011.

    ZHANG B, FU X Q. Type and formation mechanism of railway wheel and tire tread spall [J]. China Railway Science, 2001, 22(2): 73–78. DOI: 10.3321/j.issn:1001-4632.2001.02.011.
    [6] CONG T, HAN J M, HONG Y S, et al. Shattered rim and shelling of high-speed railway wheels in the very-high-cycle fatigue regime under rolling contact loading [J]. Engineering Failure Analysis, 2019, 97: 556–567. DOI: 10.1016/j.engfailanal.2019.01.047.
    [7] 张关震, 任瑞铭, 吴斯, 等. 不均匀组织对高速动车组车轮踏面剥离损伤的影响 [J]. 中国铁道科学, 2019, 40(5): 80–86. DOI: 10.3969/j.issn.1001-4632.2019.05.11.

    ZHANG G Z, REN R M, WU S, et al. Influence of non-uniform microstructure on shelling damage of wheel tread for high speed EMU [J]. China Railway Science, 2019, 40(5): 80–86. DOI: 10.3969/j.issn.1001-4632.2019.05.11.
    [8] CUMMINGS S M, LONSDALE C P. Wheel spalling literature review [C]//ASME 2008 Rail Transportation Division Fall Technical Conference. Chicago: ASME, 2008: 11–25. DOI: 10.1115/rtdf2008-74010.
    [9] 陶贵闯, 赵秀娟, 潘金芝, 等. D2高速车轮钢在滑动磨损下的白层形成与剥落 [J]. 摩擦学学报, 2018, 38(4): 437–444. DOI: 10.16078/j.tribology.2018.04.008.

    TAO G C, ZHAO X J, PAN J Z, et al. Formation and exfoliation of the white etching layer of D2 high speed wheel steel under sliding wear [J]. Tribology, 2018, 38(4): 437–444. DOI: 10.16078/j.tribology.2018.04.008.
    [10] ZENG D F, LU L T, GONG Y H, et al. Influence of solid solution strengthening on spalling behavior of railway wheel steel [J]. Wear, 2017, 372/373: 158–168. DOI: 10.1016/j.wear.2016.12.025.
    [11] WANG W J, GUO J, LIU Q Y. Experimental study on wear and spalling behaviors of railway wheel [J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1243–1249. DOI: 10.3901/cjme.2013.06.1243.
    [12] 郭俊, 王文健, 张伟, 等. 车轮踏面剥离试验研究 [J]. 铁道车辆, 2006, 44(4): 1–4. DOI: 10.3969/j.issn.1002-7602.2006.04.001.

    GUO J, WANG W J, ZHANG W, et al. Test and research on wheel tread peeling [J]. Rolling Stock, 2006, 44(4): 1–4. DOI: 10.3969/j.issn.1002-7602.2006.04.001.
    [13] KATO T, KATO H, MAKINO T, et al. Effect of elevated temperature on shelling property of railway wheel steel [J]. Wear, 2016, 366/367: 359–367. DOI: 10.1016/j.wear.2016.04.015.
    [14] CUMMINGS S M, MCCABE T, GOSSELIN D. Brake shoes and thermal mechanical shelling [C]//ASME 2008 Rail Transportation Division Fall Technical Conference. Chicago: ASME, 2009: 73-78. DOI: 10.1115/rtdf2008-74016.
    [15] 王晨, 马卫华, 罗世辉, 等. 机车车辆踏面损伤机理研究 [J]. 振动、测试与诊断, 2016, 36(5): 890–896. DOI: 10.16450/j.cnki.issn.1004-6801.2016.05.011.

    WANG C, MA W H, LUO S H, et al. Research on the tread damage of locomotives [J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(5): 890–896. DOI: 10.16450/j.cnki.issn.1004-6801.2016.05.011.
    [16] LIU W, MA W H, LUO S H, et al. Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration [J]. Vehicle System Dynamics, 2015, 53(4): 546–567. DOI: 10.1080/00423114.2015.1008015.
    [17] КРАСНОВ О Г, 宋忠明. 车轮踏面出现缺陷时转向架承载铸件的承载能力 [J]. 国外机车车辆工艺, 2017(5): 30–35.

    КРАСНОВ О Г, SONG Z M. Bearing capacity of bogie bearing castings with defects on wheel tread [J]. Foreign Locomotive & Rolling Stock Technology, 2017(5): 30–35.
    [18] 汪金余. 车轮内部损伤及踏面剥离的研究 [D]. 大连: 大连交通大学, 2018: 48−52.
    [19] 中国铁路总公司. 铁路技术管理规程: 高速铁路部分 [M]. 北京: 中国铁道出版社, 2014: 31−33.
    [20] 中国铁路总公司. 铁路动车组运用维修规则 [M]. 北京: 中国铁道出版社, 2017: 41−87.
    [21] 高义刚, 何庆复, 柳拥军. 车轮踏面损伤对策及其容限标准的修订 [J]. 铁道机车车辆, 2002(5): 20–23. DOI: 10.3969/j.issn.1008-7842.2002.05.007.

    GAO Y G, HE Q F, LIU Y J. Method of reducing wheel tread and the revision of tolerance criterion [J]. Railway Locomotive & Car, 2002(5): 20–23. DOI: 10.3969/j.issn.1008-7842.2002.05.007.
    [22] ZHAO X, WEN Z F, ZHU M H, et al. A study on high-speed rolling contact between a wheel and a contaminated rail [J]. Vehicle System Dynamics, 2014, 52(10): 1270–1287. DOI: 10.1080/00423114.2014.934845.
    [23] JING L, HAN L L. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress [J]. Vehicle System Dynamics, 2017, 55(12): 1946–1972. DOI: 10.1080/00423114.2017.1340651.
    [24] 韩亮亮, 敬霖, 赵隆茂. 基于Cowper-Symonds本构模型铁路车轮扁疤激发的轮轨冲击仿真分析 [J]. 高压物理学报, 2017, 31(6): 785–793. DOI: 10.11858/gywlxb.2017.06.014.

    HAN L L, JING L, ZHAO L M. Finite element simulation of the flat-induced wheel-rail impact based on the Cowper-Symonds empirical mode [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 785–793. DOI: 10.11858/gywlxb.2017.06.014.
    [25] LIU K, JING L. A finite element analysis-based study on the dynamic wheel-rail contact behaviour caused by wheel polygonization [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1285–1298. DOI: 10.1177/0954409719891549.
    [26] WEI Z L, SHEN C, LI Z L, et al. Wheel-rail impact at crossings: relating dynamic frictional contact to degradation [J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 041016. DOI: 10.1115/1.4035823.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  171
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-10-21
  • 网络出版日期:  2022-03-11
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回