• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

浅埋炸药爆炸形貌及其冲击作用效应

赵振宇 周贻来 任建伟 卢天健

赵振宇, 周贻来, 任建伟, 卢天健. 浅埋炸药爆炸形貌及其冲击作用效应[J]. 爆炸与冲击, 2022, 42(4): 042303. doi: 10.11883/bzycj-2021-0376
引用本文: 赵振宇, 周贻来, 任建伟, 卢天健. 浅埋炸药爆炸形貌及其冲击作用效应[J]. 爆炸与冲击, 2022, 42(4): 042303. doi: 10.11883/bzycj-2021-0376
ZHAO Zhenyu, ZHOU Yilai, REN Jianwei, LU Tianjian. Explosion morphology and impacting effects of shallow-buried explosives[J]. Explosion And Shock Waves, 2022, 42(4): 042303. doi: 10.11883/bzycj-2021-0376
Citation: ZHAO Zhenyu, ZHOU Yilai, REN Jianwei, LU Tianjian. Explosion morphology and impacting effects of shallow-buried explosives[J]. Explosion And Shock Waves, 2022, 42(4): 042303. doi: 10.11883/bzycj-2021-0376

浅埋炸药爆炸形貌及其冲击作用效应

doi: 10.11883/bzycj-2021-0376
基金项目: 国家自然科学基金(11972185, 12002156);中国博士后科学基金(2020M671473)
详细信息
    作者简介:

    赵振宇(1986- ),男,博士,副研究员, zhenyu_zhao@nuaa.edu.cn

    通讯作者:

    卢天健(1964- ),男,博士,教授, tjlu@nuaa.edu.cn

  • 中图分类号: O389

Explosion morphology and impacting effects of shallow-buried explosives

  • 摘要: 为研究浅埋炸药爆炸形貌及其冲击作用效应,提出了一套新型试验工装,通过浅埋砂爆试验,系统探究了浅埋爆炸过程中冲击波的传播、爆炸产物与砂土的喷射轨迹、靶板的变形形貌以及爆炸载荷的空间分布情况。结果表明:浅埋爆炸在空气中产生冲击波,其传播速度大于爆炸产物与砂土的喷射速度;起爆后的爆炸产物与砂土迅速向外喷射,体积随时间不断膨胀,撞击到靶板后向四周扩散;通过特 殊设计的试验工装与靶板,定性得出浅埋砂爆载荷产生的冲量在空间中呈非均匀分布,即中间最大,向四周逐渐减小。对比分析2次不同试验,发现炸药埋深影响爆炸产物和砂土喷射时的相对位置:埋深较小时,爆炸产物会冲破覆盖的砂层,直接作用到靶板;埋深较大时,爆炸产物基本被砂层包覆,随砂土共同作用到靶板;此外,增大炸药埋深会延缓爆炸产物与砂土的喷射时间。砂土的类型直接影响靶板的变形形貌,按北约标准AEP-55配做的砂土不仅使靶板产生整体弯曲变形,还在靶板上形成大量凹坑,产生侵彻效果,而普通的河砂仅使靶板产生整体弯曲变形,无明显的侵彻效果。
  • 图  1  试验工装示意图

    Figure  1.  Schematic of test set-up

    图  2  靶板平面尺寸

    Figure  2.  In-plane geometric dimensions of target plate

    图  3  AL6063的真实应力-应变曲线

    Figure  3.  True stress-strain curve of AL6063

    图  4  试验1和试验2采用砂土的形貌

    Figure  4.  Morphologies of sand used in test 1 and test 2

    图  5  试验1和试验2采用砂土的粒径分布

    Figure  5.  Particle size distribution of sand used in test 1 and test 2

    图  6  试验用TNT及其起爆方式

    Figure  6.  TNT and its initiation charge

    图  7  炸药、砂土、靶板的相对位置

    Figure  7.  Relative positions of explosive, sand and target plate

    图  8  靶板边界条件

    Figure  8.  Boundary conditions of target plates

    图  9  爆炸过程

    Figure  9.  Explosion process

    图  10  冲击波横向传播过程

    Figure  10.  Transverse propagation process of shock wave

    图  11  冲击波与砂土的速度时程曲线

    Figure  11.  Velocity versus time curves for both shock wave and sand

    图  12  靶板变形

    Figure  12.  Deformation of target plates

    图  13  靶板变形轮廓

    Figure  13.  Deformed profiles of target plates

    图  14  靶板的变形挠度

    Figure  14.  Deformations of target plates

    图  15  试验1和试验2产生的炸坑形貌

    Figure  15.  Morphologies of bomb-craters in Test 1 and Test 2

    图  16  靶板变形形貌对比

    Figure  16.  Comparison of deformation morphologies of target plates

    图  17  试验1和试验2中爆炸产物和砂土的喷射轨迹对比

    Figure  17.  Comparison of ejection trajectories of explosive products and sands between test 1 and test 2

    图  18  砂土对靶板的侵彻作用

    Figure  18.  Penetrations of sand particles into target plates

    图  19  试验1靶板上凹坑数量统计

    Figure  19.  Statistics of pits formed on target plates after shallow-buried explosion

    图  20  不同直径凹坑与砂子所占比例

    Figure  20.  Proportion of holes and sand particles having different diameters

    表  1  浅埋砂爆试验参数

    Table  1.   Parameters of shallow buried sand explosion

    试验 炸药参数砂土参数炸药位置参数
    类型质量/kg直径/mm高度/mm类型密度/(kg·m−3含水量/%埋深/mm炸高/mm
    1TNT19090北约标准砂22614.31001000
    2TNT19090普通河砂138718.61451000
    下载: 导出CSV
  • [1] 张钱城, 郝方楠, 李裕春, 等. 爆炸冲击载荷作用下车辆和人员的损伤与防护 [J]. 力学与实践, 2014, 36(5): 527–539. DOI: 10.6052/1000-0879-13-539.

    ZHANG Q C, HAO F N, LI Y C, et al. Research progress in the injury and protection to vehicle and passengers under explosive shock loading [J]. Mechanics in Engineering, 2014, 36(5): 527–539. DOI: 10.6052/1000-0879-13-539.
    [2] HWANG J, JUNG Y, HOFMANN U, et al. Global mapping and analysis of anti-vehicle mine incidents in 2018: GICHD–SIPRI [R]. Geneva, Switzerland, 2019.
    [3] Landmine monitor 2015 [R]. International campaign to ban landmines—Cluster Munition Coalition, 2015. http://www.the-monitor.org/media/2152583/Landmine-Monitor-2015_finalpdf.pdf.
    [4] 赵振宇, 任建伟, 金峰, 等. 浅埋炸药爆炸动力学研究进展 [J]. 应用力学学报, 2022(1): 1–11. DOI: 10.11776/j.issn.1000-4939.2022.01.001.

    ZHAO Z Y, REN J W, JIN F, et al. Progress in research on explosion dynamics of shallow-buried explosives [J]. Chinese Journal of Applied Mechanics, 2022(1): 1–11. DOI: 10.11776/j.issn.1000-4939.2022.01.001.
    [5] LINFORTH S, TRAN P, RUPASINGHE M, et al. Unsaturated Soil blast: flying plate experiment and numerical investigations [J]. International Journal of Impact Engineering, 2019, 125: 212–228. DOI: 10.1016/j.ijimpeng.2018.08.002.
    [6] DESHPANDE V S, MCMEEKING R M, WADLEY H N G, et al. Constitutive model for predicting dynamic interactions between soil ejecta and structural panels [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1139–1164. DOI: 10.1016/j.jmps.2009.05.001.
    [7] WESTINE P S, MORRIS B L, COX P A, et al. Development of computer program for floor plate response from land mine explosions [R]. Warren: US Army Tank-Automotive Command, 1985.
    [8] GRUJICIC M, GLOMSKI P, CHEESEMAN B. Dimensional analysis of impulse loading resulting from detonation of shallow-buried charges [J]. Multidiscipline Modeling in Materials and Structures, 2013, 9(3): 367–390. DOI: 10.1108/mmms-01-2013-0002.
    [9] DENEFELD V, HEIDER N, HOLZWARTH A. Measurement of the spatial specific impulse distribution due to buried high explosive charge detonation [J]. Defence Technology, 2017, 13(3): 219–227. DOI: 10.1016/j.dt.2017.03.002.
    [10] RIGBY S E, FAY S D, CLARKE S D, et al. Measuring spatial pressure distribution from explosives buried in dry Leighton Buzzard sand [J]. International Journal of Impact Engineering, 2016, 96: 89–104. DOI: 10.1016/j.ijimpeng.2016.05.004.
    [11] RIGBY S E, FAY S D, TYAS A, et al. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils [J]. Shock Waves, 2018, 28(3): 613–626. DOI: 10.1007/s00193-017-0727-7.
    [12] CLARKE S D, FAY S D, WARREN J A, et al. A large scale experimental approach to the measurement of spatially and temporally localised loading from the detonation of shallow-buried explosives [J]. Measurement Science and Technology, 2015, 26(1): 015001. DOI: 10.1088/0957-0233/26/1/015001.
    [13] PICKERING E G, YUEN S C K, NURICK G N, et al. The response of quadrangular plates to buried charges [J]. International Journal of Impact Engineering, 2012, 49: 103–114. DOI: 10.1016/j.ijimpeng.2012.05.007.
    [14] ROGER E, LORET B, CALVEL J P. Detonation of small charges buried in cohesionless soil [M]//SCIAMMARELLA C, CONSIDINE J, GLOECKNER P. Experimental and Applied Mechanics. Cham: Springer, 2016: 107–114. DOI: 10.1007/978-3-319-22449-7_13.
    [15] CLARKE S D, FAY S D, WARREN J A, et al. Predicting the role of geotechnical parameters on the output from shallow buried explosives [J]. International Journal of Impact Engineering, 2017, 102: 117–128. DOI: 10.1016/j.ijimpeng.2016.12.006.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  111
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 修回日期:  2021-10-02
  • 网络出版日期:  2022-03-10
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回