外加磁场对乙炔气体爆炸反应影响研究

高建村 杨喜港 胡守涛 洪子金 王乐 李如霞 夏艺萌 孙谞

高建村, 杨喜港, 胡守涛, 洪子金, 王乐, 李如霞, 夏艺萌, 孙谞. 外加磁场对乙炔气体爆炸反应影响研究[J]. 爆炸与冲击, 2022, 42(7): 075401. doi: 10.11883/bzycj-2021-0417
引用本文: 高建村, 杨喜港, 胡守涛, 洪子金, 王乐, 李如霞, 夏艺萌, 孙谞. 外加磁场对乙炔气体爆炸反应影响研究[J]. 爆炸与冲击, 2022, 42(7): 075401. doi: 10.11883/bzycj-2021-0417
GAO Jiancun, YANG Xigang, HU Shoutao, HONG Zijin, WANG Le, LI Ruxia, XIA Yimeng, SUN Xu. Effect of external magnetic field on explosion reaction of acetylene gas[J]. Explosion And Shock Waves, 2022, 42(7): 075401. doi: 10.11883/bzycj-2021-0417
Citation: GAO Jiancun, YANG Xigang, HU Shoutao, HONG Zijin, WANG Le, LI Ruxia, XIA Yimeng, SUN Xu. Effect of external magnetic field on explosion reaction of acetylene gas[J]. Explosion And Shock Waves, 2022, 42(7): 075401. doi: 10.11883/bzycj-2021-0417

外加磁场对乙炔气体爆炸反应影响研究

doi: 10.11883/bzycj-2021-0417
基金项目: 北京市教委科技计划项目(KM201910017001);北京市自然科学基金青年项目(2214071)
详细信息
    作者简介:

    高建村(1964- ),男,博士,教授,gaojiancun@bipt.edu.cn

    通讯作者:

    胡守涛(1986- ),男,博士,讲师,hushoutao@bipt.edu.cn

  • 中图分类号: O389

Effect of external magnetic field on explosion reaction of acetylene gas

  • 摘要: 为探究磁场对气体爆炸反应的影响,实验研究了磁场强度对C2H2爆炸特征的影响规律,结果表明:磁场能抑制C2H2爆炸压力和升压速率,磁场强度越大,抑制效果越明显;沿火焰传播方向,磁场对C2H2爆炸火焰传播速度呈现先促进后抑制的效果,整体表现为抑制作用。磁场强度较低时,爆炸火焰平均传播速度降低了38.94%,磁场强度较高时,爆炸火焰平均传播速度降低了49.62%。利用Chemkin-Pro软件模拟了C2H2爆炸基元反应过程,理论推导了磁场影响C2H2爆炸的反应机理,磁场改变了C2H2爆炸反应路径,是造成爆炸特征参数下降的主要原因。由于不同种类自由基的摩尔质量和磁化强度不同,在磁场中,洛伦兹力和梯度磁场力对小分子量自由基比对大分子量自由基的作用力更大。磁场改变了自由基的运动轨迹,由于同种小分子量自由基的聚集和器壁效应的产生,减小了关键自由基之间的碰撞几率,降低了基元反应的速率,导致爆炸强度下降。
  • 图  1  电磁场下预混气体爆炸实验装置示意图

    Figure  1.  Schematic of gas explosion experiment device under electromagnetic field

    图  2  不同磁场强度下乙炔/空气的爆炸压力

    Figure  2.  Explosion pressures of C2H2/air under different magnetic fields strengths

    图  3  平均压力上升速率和最大压力对比图

    Figure  3.  Average pressure rise rate and maximum explosion pressure

    图  4  乙炔/空气爆炸火焰传播速度和平均传播速度

    Figure  4.  Flame propagation velocity and average propagation velocityof C2H2/air explosion

    图  5  C2H2的生成速率分析

    Figure  5.  Rate of product analysis of C2H2

    图  6  C2H2的敏感性分析

    Figure  6.  Sensitivity analysis of C2H2

    图  7  有无磁场时C2H2生成CO的反应路径变化

    Figure  7.  Changes in reaction pathto produce CO from C2H2 due to magnetic field

    图  8  有无磁场时C2H2生成H2O的反应路径变化

    Figure  8.  Changes inreaction path to produce H2O from C2H2 due to magnetic field

    表  1  无磁场时乙炔/空气的爆炸火焰传播速度

    Table  1.   Flame propagation velocity of C2H2/air explosion without a magnetic field

    实验光纤传感器距离/mm时间/μs速度/(m·s−1)平均速度/(m·s−1)
    11~23009945.9330.1681.64
    2~33002253.58133.12
    21~23009893.2730.3280.97
    2~33002279.23131.62
    31~23009369.1432.0298.51
    2~33001818.18165.00
    下载: 导出CSV

    表  2  较低磁场强度下乙炔/空气的爆炸火焰传播速度

    Table  2.   Flame propagation velocity of C2H2/air explosion under lower magnetic field strength

    实验光纤传感器距离/mm时间/μs速度/(m·s−1)平均速度/(m·s−1)
    11~23007955.4537.7153.02
    2~33004390.4668.33
    21~23007874.0238.1052.80
    2~33004444.2667.50
    31~23008002.1337.4953.64
    2~33004298.6169.79
    下载: 导出CSV

    表  3  较高磁场强度下乙炔/空气的爆炸火焰传播速度

    Table  3.   Flame propagation velocity of C2H2/air explosion under higher magnetic field strength

    实验光纤传感器距离/mm时间/μs速度/(m·s−1)平均速度/(m·s−1)
    11~23004917.2361.0141.81
    2~330013269.0722.61
    21~23004705.8863.7543.88
    2~330012494.1524.01
    31~23004558.5865.8145.86
    2~330011577.7025.91
    下载: 导出CSV

    表  4  起始参数

    Table  4.   Initial parameters

    C2H2体积分数/%N2体积分数/%O2体积分数/%温度/K压力/kPa时间/s
    7.772.91719.38312001010.05
    下载: 导出CSV
  • [1] REVANTH A V, MALAIKANNAN G, MALHOTRA V. On the effect of repulsive magnetic field on partially premixed flames [J]. IOP Conference Series:Materials Science and Engineering, 2020, 912(4): 042020. DOI: 10.1088/1757-899X/912/4/042020.
    [2] OOMMEN L P, NARAYANAPPA K G, VIJAYALAKSHMI S K. Experimental analysis of synergetic effect of part-cooled exhaust gas recirculation on magnetic field-assisted combustion of liquefied petroleum gas [J]. Arabian Journal for Science and Engineering, 2020, 45(11): 9187–9196. DOI: 10.1007/s13369-020-04696-z.
    [3] KUMAR M, AGARWAL S, KUMAR V, et al. Experimental investigation on butane diffusion flames under the influence of magnetic field by using digital speckle pattern interferometry [J]. Applied Optics, 2015, 54(9): 2450–2460. DOI: 10.1364/AO.54.002450.
    [4] AGARWAL S, KUMAR M, SHAKHER C. Experimental investigation of the effect of magnetic field on temperature and temperature profile of diffusion flame using circular grating Talbot interferometer [J]. Optics and Lasers in Engineering, 2015, 68: 214–221. DOI: 10.1016/J.OPTLASENG.2015.01.004.
    [5] ITOH S, SHINODA M, KITAGAWA K, et al. Spatially resolved elemental analysis of a hydrogen-air diffusion flame by laser-induced plasma spectroscopy (LIPS) [J]. Microchemical Journal, 2001, 70(2): 143–152. DOI: 10.1016/S0026-265X(01)00107-2.
    [6] KAJIMOTO T, YAMADA E, SHINODA M, et al. Dependence of magnetically induced change in oh distribution in a methane-air premixed flame on equivalence ratio [J]. Combustion Science and Technology, 2003, 175(9): 1611–1623. DOI: 10.1080/00102200302369.
    [7] SHINODA M, YAMADA E, KAJIMOTO T, et al. Mechanism of magnetic field effect on OH density distribution in a methane–air premixed jet flame [J]. Proceedings of the Combustion Institute, 2005, 30(1): 277–284. DOI: 10.1016/J.PROCI.2004.07.006.
    [8] YAMADA E, KITABAYASHI N, HAYASHI A K, et al. Mechanism of high-pressure hydrogen auto-ignition when spouting into air [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2560–2566. DOI: 10.1016/J.IJHYDENE.2010.05.011.
    [9] YAMADA E, SHINODA M, YAMASHITA H, et al. Experimental and numerical analyses of magnetic effect on OH radical distribution in a hydrogen-oxygen diffusion flame [J]. Combustion and Flame, 2003, 135(4): 365–379. DOI: 10.1016/J.COMBUSTFLAME.2003.08.005.
    [10] YAMADA E, SHINODA M, YAMASHITA H, et al. Numerical analysis of a hydrogen-oxygen diffusion flame in vertical or horizontal gradient of magnetic field [J]. Combustion Science and Technology, 2002, 174(9): 149–164. DOI: 10.1080/713713079.
    [11] YAMADA E, SHINODA M, YAMASHITA H, et al. Influence of four kinds of gradient magnetic fields on hydrogen-oxygen flame [J]. AIAA Journal, 2003, 41(8): 1535–1541. DOI: 10.2514/2.2104.
    [12] 高建村, 王乐, 胡守涛, 等. 不同磁性金属丝对丙烷爆炸反应抑制机理研究 [J]. 中国安全生产科学技术, 2020, 16(7): 125–130. DOI: 10.11731/j.issn.1673-193x.2020.07.020.

    GAO J C, WANG L, HU S T, et al. Study on inhibition mechanism of different magnetic metal wires on propane explosion [J]. Journal of Safety Science and Technology, 2020, 16(7): 125–130. DOI: 10.11731/j.issn.1673-193x.2020.07.020.
    [13] ZHOU S Y, GAO J C, LUO Z M, et al. Effects of mesh aluminium alloy and aluminium velvet on the explosion of H2/air, CH4/air and C2H2/air mixtures [J]. International Journal of Hydrogen Energy, 2021, 46(27): 14871–14880. DOI: 10.1016/J.IJHYDENE.2021.01.200.
    [14] 左俊祥. 反应体系HCl+OH与O+C2H2的势能面及动力学理论研究[D]. 南京: 南京大学, 2019.

    ZUO J X. Theoretical studies of potential energy surfaces and dynamics for the HCl+OH and O+C2H2 reaction systems[D]. Nanjing: Nanjing University, 2019.
    [15] BASTIN E, DELFAU J L, REUILLON M, et al. Experimental and computational investigation of the structure of a sooting C2H2-O2-Ar flame [J]. Symposium (International) on Combustion, 1989, 22(1): 313–322. DOI: 10.1016/S0082-0784(89)80037-2.
    [16] WINTER J, BERNDT J, HONG S H, et al. Dust formation in Ar/CH4 and Ar/C2H2 plasmas [J]. Plasma Sources Science and Technology, 2009, 18(3): 034010. DOI: 10.1088/0963-0252/18/3/034010.
    [17] SANDER R K, TIEE J J, QUICK C R, et al. Quenching of C2H emission produced by vacuum ultraviolet photolysis of acetylene [J]. The Journal of Chemical Physics, 1988, 89(6): 3495–3501. DOI: 10.1063/1.454920.
    [18] MCKEE K W, BLITZ M A, CLEARY P A, et al. Experimental and master equation study of the kinetics of OH+C2H2: temperature dependence of the limiting high pressure and pressure dependent rate coefficients [J]. The Journal of Physical Chemistry A, 2007, 111(19): 4043–4055. DOI: 10.1021/JP067594Y.
    [19] SMITH I W M, ZELLNE R. Rate measurements of reactions of OH by resonance absorption. Part 2. —Reactions of OH with CO, C2H4 and C2H2 [J]. Journal of the Chemical Society, Faraday Transactions2:Molecular and Chemical Physics, 1973, 69: 1617–1627. DOI: 10.1039/F29736901617.
    [20] HIRAOKA K, TAKAYAMA T, EUCHI A, et al. Study of the reactions of H and D atoms with solid C2H2, C2H4, and C2H6 at cryogenic temperatures [J]. The Astrophysical Journal, 2000, 532(2): 1029–1037. DOI: 10.1086/308612.
    [21] YANG X G, HU S T, WANG L, et al. Effect of magnetic field on dynamics of 5% propane/air premixed gases [J]. Journal of Physics:Conference Series, 2021, 1948: 012133. DOI: 10.1088/1742-6596/1948/1/012133.
    [22] WANG H, YOU X Q, JOSHI AV, et al. USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds[DB/OL]. http://ignis.usc.edu/USC_Mech_II.htm.2007.
    [23] OOMMEN L P, KUMAR G N. A study on the effect of magnetic field on the properties and combustion of hydrocarbon fuels [J]. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 2019, 9(3): 89–98. DOI: 10.24247/IJMPERDJUN20199.
    [24] AOKI T. Radical emissions and butane diffusion flames exposed to uniform magnetic fields encircled by magnetic gradient fields [J]. Japanese Journal of Applied Physics, 1990, 29(5R): 952–957. DOI: 10.1143/JJAP.29.952.
    [25] MIZUTANI Y, FUCHIHATA M, OHKURA Y. Pre-mixed laminar flames in a uniform magnetic field [J]. Combustion and flame, 2001, 125(1/2): 1071–1073. DOI: 10.1016/S0010-2180(00)00244-3.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  133
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2022-02-12
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回