• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

椭圆截面侵彻弹体结构优化设计与结构响应

谭远深 黄风雷 皮爱国

谭远深, 黄风雷, 皮爱国. 椭圆截面侵彻弹体结构优化设计与结构响应[J]. 爆炸与冲击, 2022, 42(6): 063301. doi: 10.11883/bzycj-2021-0436
引用本文: 谭远深, 黄风雷, 皮爱国. 椭圆截面侵彻弹体结构优化设计与结构响应[J]. 爆炸与冲击, 2022, 42(6): 063301. doi: 10.11883/bzycj-2021-0436
TAN Yuanshen, HUANG Fenglei, PI Aiguo. Structural optimization design and structural response of elliptical-section penetration projectiles[J]. Explosion And Shock Waves, 2022, 42(6): 063301. doi: 10.11883/bzycj-2021-0436
Citation: TAN Yuanshen, HUANG Fenglei, PI Aiguo. Structural optimization design and structural response of elliptical-section penetration projectiles[J]. Explosion And Shock Waves, 2022, 42(6): 063301. doi: 10.11883/bzycj-2021-0436

椭圆截面侵彻弹体结构优化设计与结构响应

doi: 10.11883/bzycj-2021-0436
详细信息
    作者简介:

    谭远深(1997- ),男,硕士研究生,page64@126.com

    通讯作者:

    皮爱国(1977- ),男,博士,研究员,博士生导师,aiguo_pi@bit.edu.cn

  • 中图分类号: O385

Structural optimization design and structural response of elliptical-section penetration projectiles

  • 摘要: 针对异型截面侵彻弹体的工程应用需求,围绕椭圆截面侵彻弹体结构响应及优化设计问题开展研究。引入无量纲壁厚系数,改进了椭圆截面弹体参数化表达式;以提高短轴惯性矩和静矩、降低短轴方向结构响应为目标,开展了椭圆截面弹体抗弯优化设计。基于152 mm口径轻气炮开展了椭圆截面弹体反弹道侵彻试验研究,获得了软回收试验弹体的弯曲挠度结果;开展了试验工况的数值模拟研究,提取了数值模拟中弹体的变形结果;建立了椭圆截面侵彻弹体弯曲结构响应计算模型,利用此模型对试验弹体变形情况进行了计算。与原椭圆截面弹体相比,优化后截面短轴惯性矩、静矩提高比例约为16%,试验弹体弯曲挠度降低比例约为25.3%,数值模拟及理论模型计算结果与试验结果较为相符,验证了本文优化设计方法的有效性,可为工程设计提供参考。
  • 图  1  现有椭圆截面弹体研究中的弹体结构设计[5,7]

    Figure  1.  Existing structure designs of elliptical-section projectiles[5,7]

    图  2  圆形截面弹体、现有椭圆截面弹体与改进的椭圆截面弹体截面设计方法

    Figure  2.  Cross-section designs of circular-section, existing elliptical-section, and improved elliptical-section projectiles

    图  3  出现塑性铰时自由梁的响应情况

    Figure  3.  Response of the free beam with a plastic hinge

    图  4  椭圆异型侵彻体截面优化设计方法

    Figure  4.  Optimal design method for bending resistance of elliptical-section projectiles

    图  5  优化截面内腔翼缘形状尺寸示意图

    Figure  5.  Schematic diagram of the shape and size of the upper edge of an optimized section inner cavity

    图  6  试验中所用弹体

    Figure  6.  Projectiles used in tests

    图  7  椭圆截面弹体反弹道侵彻试验结果

    Figure  7.  Reverse ballistic penetration test results of elliptical-section projectiles

    图  8  提取试验弹体中轴线流程

    Figure  8.  Flow of extracting the central axis of the test projectile

    图  9  不同结构弹体试验结果中轴线的对比

    Figure  9.  Comparison of the central axes of the projectiles with different structures after tests

    图  10  模拟工况的有限元模型

    Figure  10.  The finite element model for simulation condition

    图  11  ξ=0.15的弹体形变模拟结果与试验结果的对比

    Figure  11.  Comparisons between simulation and test results for deformation of the projectiles of ξ=0.15

    图  12  ξ=0.15弹体模拟形变中轴线与试验形变中轴线对比

    Figure  12.  Comparison of simulation and test results of the central axes of the projectiles of ξ=0.15

    图  13  0.15-0.15弹体正反弹道模拟结果对比 (t=115 μs)

    Figure  13.  Simulated results of normal ballistic and reverse ballistic of the 0.15-0.15 projectile (t=115 μs)

    图  14  0.15-0.15弹体正反弹道z向接触载荷对比

    Figure  14.  Comparison of z-directional contact loads between normal ballistic and reverse ballistic of the 0.15-0.15 projectile

    图  15  反弹道撞击过程中弹体所受到的接触载荷

    Figure  15.  Contact loads on the projectile during reverse ballistic impact

    图  16  弹体结构响应计算流程

    Figure  16.  Flow of projectile structural response calculation

    图  17  ξ=0.15弹体理论计算中轴线与试验形变中轴线对比(Mp1)

    Figure  17.  Comparison of calculation and test results of the central axes of the projectiles of ξ=0.15 (Mp1)

    图  18  弹体理论计算中轴线与试验形变中轴线对比(Mp2)

    Figure  18.  Comparison of calculation and test results of the central axes of the projectiles of ξ=0.15 (Mp2)

    表  1  试验弹体截面几何特征

    Table  1.   Geometric characteristics of test projectile sections

    弹体结构截面形状短轴惯性矩/mm4短轴静矩/mm3长轴惯性矩/mm4长轴静矩/mm3
    0.15-0.151159.45141.915870.66212.86
    0.15-0.101257.49151.204704.62182.68
    0.15-0.051350.02164.553274.32166.59
    下载: 导出CSV

    表  2  试验撞击条件与弹体挠度结果

    Table  2.   Test conditions and deflections obtained

    弹体编号弹体截面形状弹体着靶速度/(m·s−1挠度结果/mm实际攻角/(°)
    0.15-0.15(1)198.224.626.54
    0.15-0.15(2)216.484.795.84
    0.15-0.10(1)215.014.086.07
    0.15-0.05(1)209.423.586.42
    下载: 导出CSV

    表  3  数值模拟中弹靶材料参数

    Table  3.   Material parameters in numerical simulation

    材料ρ/(g·cm−3E/GPaνY/MPaEH/MPaK/MPan
    双线性硬化30CrMnSiNi2A7.83201.00.331 650.0300
    指数硬化2024-O2.70 67.20.34 134.42730.114
    下载: 导出CSV

    表  4  弹体中轴线挠度结果试验、计算与模拟结果对比

    Table  4.   Comparison of test, calculation, and simulation results of projectile central axis deflection

    弹体结构挠度/cm与试验结果的相对误差/%
    试验理论模拟理论模拟
    0.15-0.050.3580.3640.3551.70.9
    0.15-0.100.4080.4170.4112.20.7
    0.15-0.150.4790.4770.4920.42.6
    下载: 导出CSV
  • [1] DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011.
    [2] 王浩, 潘鑫, 武海军, 等. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析 [J]. 爆炸与冲击, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.

    WANG H, PAN X, WU H J, et al. Energy dissipation analysis of elliptical truncated oval rigid projectile penetrating stiffened plate [J]. Explosion and Shock Waves, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.
    [3] 王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(S2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.

    WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(S2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.
    [4] DAI X H, WANG K H, DUAN J, et al. A rigid elliptical cross-sectional projectile with different geometrical characteristics penetration into concrete target [J]. Journal of Physics: Conference Series, 2020, 1507: 032001. DOI: 10.1088/1742-6596/1507/3/032001.
    [5] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
    [6] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [7] 刘子豪, 武海军, 高旭东, 等. 椭圆截面弹体侵彻混凝土阻力特性研究 [J]. 北京理工大学学报, 2019, 39(2): 135–141; 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.

    LIU Z H, WU H J, GAO X D, et al. Study on the resistance characteristics of elliptical cross-section projectile penetrating concrete [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 135–141; 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.
    [8] 潘鑫. 椭圆截面刚性弹体贯穿金属靶效能研究 [D]. 北京: 北京理工大学, 2019: 11–13.

    PAN X. Study on the performance of elliptical cross-sectional rigid projectile perforating metal target [D]. Beijing, China: Beijing Institute of Technology, 2019: 11–13.
    [9] 郭磊, 何勇, 潘绪超, 等. 非圆截面弹体侵彻混凝土靶试验与仿真研究 [J]. 兵器材料科学与工程, 2019, 42(3): 62–68. DOI: 10.14024/j.cnki.1004-244x.20190123.002.

    GUO L, HE Y, PAN X C, et al. Experimental and numerical investigation on the penetration mechanics of non-circular projectile into concrete [J]. Ordnance Material Science and Engineering, 2019, 42(3): 62–68. DOI: 10.14024/j.cnki.1004-244x.20190123.002.
    [10] 皮爱国. 大长细比动能弹体结构动态响应研究 [D]. 北京: 北京理工大学, 2007: 18; 93–105.
    [11] 刘坚成. 反向撞击下弹体非正侵彻结构响应研究 [D]. 北京: 北京理工大学, 2016: 71–98.

    LIU J C. Structural response of non-normal penetrating projectile under reverse impact [D]. Beijing, China: Beijing Institute of Technology, 2016: 71–98.
    [12] 陈小伟. 动能深侵彻弹的力学设计(I): 侵彻/穿甲理论和弹体壁厚分析 [J]. 爆炸与冲击, 2006, 25(6): 499–505. DOI: 10.11883/1001-1455(2005)06-0499-07.

    CHEN X W. Mechanics of structural design of EPW (I): the penetration/perforation theory and the analysis on the cartridge of projectile [J]. Explosion and Shock Waves, 2006, 25(6): 499–505. DOI: 10.11883/1001-1455(2005)06-0499-07.
    [13] YU T X, YANG J L, REID S R. Deformable body impact: dynamic plastic behaviour of a moving free-free beam striking the tip of a cantilever beam [J]. International Journal of Solids and Structures, 2001, 38(2): 261–287. DOI: 10.1016/S0020-7683(00)00019-6.
    [14] 韩斌, 刘海燕, 水小平. 材料力学教程 [M]. 北京: 电子工业出版社, 2013: 127–169.
    [15] 皮爱国, 黄风雷. 大长细比结构弹体侵彻2024-O铝靶的弹塑性动力响应 [J]. 爆炸与冲击, 2008, 28(3): 252–260. DOI: 10.11883/1001-1455(2008)03-0252-09.

    PI A G, HUANG F L. Elastic-plastic dynamic response of slender projectiles penetrating into 2024-O aluminum targets [J]. Explosion and Shock Waves, 2008, 28(3): 252–260. DOI: 10.11883/1001-1455(2008)03-0252-09.
    [16] LIU J, HUANG F, XU K, et al. Influence of mass ratio on forward and reverse ballistic impact equivalence: experiments, simulations, and mechanism analysis [J]. Experimental Mechanics, 2017, 57(3): 387–404. DOI: 10.1007/s11340-016-0225-3.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  71
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2021-11-11
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回