舱内爆炸载荷下箱型舱室角隅连接结构设计

马银亮 张攀 程远胜 刘均

马银亮, 张攀, 程远胜, 刘均. 舱内爆炸载荷下箱型舱室角隅连接结构设计[J]. 爆炸与冲击, 2022, 42(12): 125102. doi: 10.11883/bzycj-2021-0437
引用本文: 马银亮, 张攀, 程远胜, 刘均. 舱内爆炸载荷下箱型舱室角隅连接结构设计[J]. 爆炸与冲击, 2022, 42(12): 125102. doi: 10.11883/bzycj-2021-0437
MA Yinliang, ZHANG Pan, CHENG Yuansheng, LIU Jun. Design of corner connection structures of box-type cabins subjected to internal blast loading[J]. Explosion And Shock Waves, 2022, 42(12): 125102. doi: 10.11883/bzycj-2021-0437
Citation: MA Yinliang, ZHANG Pan, CHENG Yuansheng, LIU Jun. Design of corner connection structures of box-type cabins subjected to internal blast loading[J]. Explosion And Shock Waves, 2022, 42(12): 125102. doi: 10.11883/bzycj-2021-0437

舱内爆炸载荷下箱型舱室角隅连接结构设计

doi: 10.11883/bzycj-2021-0437
详细信息
    作者简介:

    马银亮(1998- ),男,硕士,2225309761@qq.com

    通讯作者:

    张 攀(1986- ),男,博士,副教授,panzhang@hust.edu.cn

  • 中图分类号: O383

Design of corner connection structures of box-type cabins subjected to internal blast loading

  • 摘要: 通过有限元软件LS-DYNA建立了舱内爆炸载荷下箱型舱室动响应数值模型,并借助文献试验结果验证了数值模型的可靠性,研究了平板型、内凹型、外凸型、箭头型、箭矢型、背面弧型等6种角隅连接结构对舱内爆炸载荷下箱型舱室变形、特征位置压力和破坏模式的影响,分析了内爆效应下角隅连接结构的失效机理。数值结果表明:舱壁角隅位置是舱内爆炸载荷作用下舱室易发生破坏撕裂的特征位置;相比无连接结构,平板型连接结构对舱壁最大塑性变形改善最大,降低幅度达到了31.9%;背面弧型连接结构能够使箱型舱室角隅等效塑性应变降低约60%;设置连接结构能够改变高塑性应变的发生位置,进而改变箱型舱室的破坏模式;采用平板型、内凹型、背面弧型连接结构的箱型舱室能够有效避免角隅失效破坏。
  • 图  1  箱型舱室几何模型

    Figure  1.  Geometric model of box cabin

    图  2  角隅连接结构几何模型

    Figure  2.  Geometric model of corner connection structure

    图  3  箱型舱室有限元模型(1/4模型)

    Figure  3.  FE model of box-cabin (1/4 model)

    图  4  箱型舱室在舱内爆炸下的动响应结果与文献[15]的对比

    Figure  4.  Simulted deformation results of box cabin subjected to internal blast loading compared with that by ref. [15]

    图  5  固支钢板在爆炸载荷下的损伤破坏模式

    Figure  5.  Damage mode of clamped steel plate subjected to blast loading.

    图  6  强内爆载荷下箱型舱室典型毁伤模式

    Figure  6.  Typical damage feature of box cabin subjected to strong blast loading

    图  7  不同连接结构箱型舱室侧壁的最大变形挠度

    Figure  7.  Maximum deflection of the side walls of box cabins with different connection structures

    图  8  不同连接结构箱型舱室侧壁的变形容貌(187.5 g TNT)

    Figure  8.  Deformation pattern of the side plate of box cabins with different connection structures. (187.5 g TNT)

    图  9  不同连接结构箱型舱室舱壁的变形云图(834.6 g TNT)

    Figure  9.  Deflection clouds of bulkheads of box cabins with different connecting structures (834.6 g TNT)

    图  10  型舱室典型特征位置的压力时程曲线

    Figure  10.  Pressure history curves for typical characteristic positions of the box cabin

    图  11  不同连接结构箱型舱室舱壁中剖面的塑性应变(187.5 g TNT)

    Figure  11.  Equivalent plastic strain in the middle bulkhead sections of box cabins with different connecting structures (187.5 g TNT)

    图  12  原始舱室与带有连接结构的舱室角隅塑性应变云图(834.6 g TNT)

    Figure  12.  Plastic strain clouds of the corners of the original cabin and the cabin with a connecting structure (834.6 g TNT)

    图  13  不同连接结构箱型舱室的变形/破坏模式(1001.0 g TNT)

    Figure  13.  Deformation/failure modes of box cabins with different connection structures (1001.0 g TNT)

    表  1  Q235钢的Johnson-Cook模型参数[15]

    Table  1.   Johnson-Cook material model parameters used for Q235 steel[15]

    $ \rho $/(kg·m−3E/GPaG/GPavAJC/MPaBJC/MPanc$ {\dot{\varepsilon }}_{0} $/s−1m
    783021080.80.33704380.600.011.000.669
    下载: 导出CSV

    表  2  TNT材料模型及状态方程参数[17]

    Table  2.   Parameters of TNT material model and equation of state[17]

    $ \rho $/(kg·m−3$ D $/(m·s−2AJWL/GPaBJWL/GPaR1R2$ \omega $ETNT/(GJ·m−3V0
    163069303.7123.234.150.950.36.01
    下载: 导出CSV

    表  3  计算工况及数值结果

    Table  3.   Computational conditions and numerical results

    工况连接结构型式l/mmm/g破损形式$ {\delta }_{s} $/mm
    YS-1原始舱室50187.555.2
    YS-280834.683.8
    YS-3851001.0角隅撕裂
    PB-1平板型50187.530.5
    PB-280834.657.1
    PB-3851001.0未见破损65.4
    NA-1内凹型50187.534.6
    NA-280834.671.2
    NA-3851001.0未见破损80.1
    WT-1外凸型50187.535.2
    WT-280834.6壁板飞出
    WT-3851001.0壁板飞出
    JT-1箭头型50187.531.6
    JT-280834.6上下板飞出64.8
    JT-3851001.0上下板飞出,侧壁角隅撕裂
    JS-1箭矢型50187.531.5
    JS-280834.6上板角隅撕裂,下板飞出64.3
    JS-3851001.0上下板飞出,侧壁角隅撕裂
    BMH-1背面弧型50187.538.8
    BMH-280834.671.4
    BMH-3851001.0未见破损79.1
    注:l为TNT装药边长,m为TNT装药质量,$ {\delta }_{s} $为中心点最大形变。
    下载: 导出CSV

    表  4  箱型舱室内特征位置压力峰值

    Table  4.   Peak pressure in feature position of box cabin.

    工况pA/MPapB/MPapC/MPap0/MPaλ1=pA/pCλ2=pB/pC
    YS-118.031.012.65.11.432.46
    PB-114.118.312.35.11.151.49
    NA-119.233.423.55.10.821.42
    WT-110.222.017.75.10.581.24
    YS-229.454.533.210.90.891.64
    PB-222.536.635.310.50.641.04
    NA-246.088.276.711.40.601.15
    WT-2
    注:pApBpC分别为测点ABC的压力峰值,p0测点C处的初始冲击波压力,λ1=pA/pC, λ2=pB/pC
    下载: 导出CSV
  • [1] 虞德水, 于川, 张远平, 等. 半穿甲战斗部对模拟舰船结构毁伤效应试验研究 [C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山: 安徽省力学学会, 2006: 294–299.
    [2] 张磊, 杜志鹏, 高鹏, 等. 水面舰艇舱内爆炸毁伤载荷研究进展 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(12): 124605. DOI: 10.1360/SSPMA-2020-0378.

    ZHANG L, DU Z P, GAO P, et al. Research advance of damage load of surface ship cabin explosion [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(12): 124605. DOI: 10.1360/SSPMA-2020-0378.
    [3] GERETTO C, YUEN S C K, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading [J]. International Journal of Impact Engineering, 2015, 79: 32–44. DOI: 10.1016/j.ijimpeng.2014.08.002.
    [4] 郑成, 孔祥韶, 徐维铮, 等. 舱内爆炸载荷作用下加筋板动态响应试验研究 [J]. 中国造船, 2018, 59(2): 129–139. DOI: 10.3969/j.issn.1000-4882.2018.02.014.

    ZHENG C, KONG X S, XU W Z, et al. Experimental study on dynamic response of stiffened plates subjected to internal blast loads [J]. Shipbuilding of China, 2018, 59(2): 129–139. DOI: 10.3969/j.issn.1000-4882.2018.02.014.
    [5] 李伟, 朱锡, 梅志远, 等. 战斗部舱内爆炸对舱室结构毁伤的实验研究 [J]. 舰船科学技术, 2009, 31(3): 34–37. DOI: 10.3404/j.issn.1672-7649.2009.03.005.

    LI W, ZHU X, MEI Z Y, et al. Experimental studies on damage effect of missile warhead on cabin’s structure under internal explosion [J]. Ship Science and Technology, 2009, 31(3): 34–37. DOI: 10.3404/j.issn.1672-7649.2009.03.005.
    [6] NURICK G N, GELMAN M E, MARSHALL N S. Tearing of blast loaded plates with clamped boundary conditions [J]. International Journal of Impact Engineering, 1996, 18(7/8): 803–827. DOI: 10.1016/S0734-743X(96)00026-7.
    [7] 陈鹏宇, 侯海量, 金键, 等. 舰船舱内爆炸载荷简化载荷计算模型 [J]. 舰船科学技术, 2020, 42(17): 22–29. DOI: 10.3404/j.issn.1672-7649.2020.09.005.

    CHEN P Y, HOU H L, JIN J, et al. Simplified calculation model for explosion loading in ship cabin [J]. Ship Science and Technology, 2020, 42(17): 22–29. DOI: 10.3404/j.issn.1672-7649.2020.09.005.
    [8] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.

    HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.
    [9] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究 [J]. 船舶力学, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011.

    HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin [J]. Journal of Ship Mechanics, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011.
    [10] 姚术健. 箱形结构内部爆炸等效缩比实验方法及破坏特性研究 [D]. 长沙: 国防科学技术大学, 2016: 125-156.

    YAO S J. Investigations on the scaling method and damage features of box-shaped structures under internal blast loading [D]. Changsha: National University of Defense Technology, 2016: 125–156.
    [11] 王佳颖, 张世联, 武少波. 舱内爆炸载荷下双层横舱壁设计初探 [J]. 振动与冲击, 2011, 30(12): 209–215. DOI: 10.13465/j.cnki.jvs.2011.12.046.

    WANG J Y, ZHANG S L, WU S B. Preliminary design of double-bulkhead for a warship under cabin internal explosion [J]. Journal of Vibration and Shock, 2011, 30(12): 209–215. DOI: 10.13465/j.cnki.jvs.2011.12.046.
    [12] 孔祥韶, 吴卫国, 李俊, 等. 角隅结构对舱内爆炸载荷影响的实验研究 [J]. 中国造船, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007.

    KONG X S, WU W G, LI J, et al. Experimental research of influence of corner structure on blast loading under inner explosion [J]. Shipbuilding of China, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007.
    [13] 李营, 张磊, 杜志鹏, 等. 改变应力状态的抗内爆炸舱壁 [J]. 船舶力学, 2020, 24(9): 1151–1157. DOI: 10.3969/j.issn.1007-7294.2020.09.007.

    LI Y, ZHANG L, DU Z P, et al. Stress state changing bulkhead resistance to internal blast [J]. Journal of Ship Mechanics, 2020, 24(9): 1151–1157. DOI: 10.3969/j.issn.1007-7294.2020.09.007.
    [14] 李营, 张磊, 杜志鹏, 等. 舱内爆炸作用下舰船舱壁失效机理与抗破损设计 [J]. 中国造船, 2019, 60(3): 27–34. DOI: 10.3969/j.issn.1000-4882.2019.03.003.

    LI Y, ZHANG L, DU Z P, et al. Failure mechanism and anti-damage design of bulkhead under internal blast [J]. Shipbuilding of China, 2019, 60(3): 27–34. DOI: 10.3969/j.issn.1000-4882.2019.03.003.
    [15] YAO S J, ZHANG D, LU F Y, et al. A combined experimental and numerical investigation on the scaling laws for steel box structures subjected to internal blast loading [J]. International Journal of Impact Engineering, 2017, 102: 36–46. DOI: 10.1016/j.ijimpeng.2016.12.003.
    [16] 李旭东. 内爆准静态压力载荷对舱壁结构的毁伤效应研究 [D]. 太原: 中北大学, 2020: 101–102.

    LI X D. Study on the damage effect of internal explosive quasi-static pressure loads to bulkhead structures [D]. Taiyuan: North University of China, 2020: 101–102.
    [17] CHEN G C, CHENG Y S, ZHANG P, et al. Design and modelling of auxetic double arrowhead honeycomb core sandwich panels for performance improvement under air blast loading [J]. Journal of Sandwich Structures & Materials, 2021, 23(8): 3574–3605. DOI: 10.1177/1099636220935563.
    [18] 李旭东, 尹建平, 赵鹏铎, 等. 固支钢板在爆炸与均布载荷耦合作用下的破坏 [J]. 兵器装备工程学报, 2021, 42(4): 26–30, 36. DOI: 10.11809/bqzbgcxb2021.04.005.

    LI X D, YIN J P, ZHAO P D, et al. Failure of clamped steel plates under local explosion and uniformly distributed load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 26–30, 36. DOI: 10.11809/bqzbgcxb2021.04.005.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  111
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2022-06-19
  • 网络出版日期:  2022-09-20
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回