爆破地震荷载作用下承插式HDPE管道动力失效机制

张玉琦 蒋楠 周传波 姚颖康 李海波 蔡忠伟 胡宗耀

张玉琦, 蒋楠, 周传波, 姚颖康, 李海波, 蔡忠伟, 胡宗耀. 爆破地震荷载作用下承插式HDPE管道动力失效机制[J]. 爆炸与冲击, 2022, 42(12): 125101. doi: 10.11883/bzycj-2021-0492
引用本文: 张玉琦, 蒋楠, 周传波, 姚颖康, 李海波, 蔡忠伟, 胡宗耀. 爆破地震荷载作用下承插式HDPE管道动力失效机制[J]. 爆炸与冲击, 2022, 42(12): 125101. doi: 10.11883/bzycj-2021-0492
ZHANG Yuqi, JIANG Nan, ZHOU Chuanbo, YAO Yingkang, LI Haibo, CAI Zhongwei, HU Zongyao. Dynamic failure mechanism of HDPE pipelines with a gasketed bell and spigot joint subjected to blasting seismic load[J]. Explosion And Shock Waves, 2022, 42(12): 125101. doi: 10.11883/bzycj-2021-0492
Citation: ZHANG Yuqi, JIANG Nan, ZHOU Chuanbo, YAO Yingkang, LI Haibo, CAI Zhongwei, HU Zongyao. Dynamic failure mechanism of HDPE pipelines with a gasketed bell and spigot joint subjected to blasting seismic load[J]. Explosion And Shock Waves, 2022, 42(12): 125101. doi: 10.11883/bzycj-2021-0492

爆破地震荷载作用下承插式HDPE管道动力失效机制

doi: 10.11883/bzycj-2021-0492
基金项目: 国家自然科学基金(41807265,41972286,42072309);爆破工程湖北省重点实验室开放基金(HKLBEF202001,HKLBEF202002)
详细信息
    作者简介:

    张玉琦(1995- ),男,博士研究生,yuqiz@cug.edu.cn

    通讯作者:

    蒋 楠(1986- ),男,博士,副教授,jiangnan@cug.edu.cn

  • 中图分类号: O383

Dynamic failure mechanism of HDPE pipelines with a gasketed bell and spigot joint subjected to blasting seismic load

  • 摘要: 承插式管道接口更易受到外界荷载破坏导致管道失效,为保证爆破开挖过程中邻近承插式高密度聚乙烯(high-density polyethylene,HDPE)波纹管道的安全运营,控制爆破振动荷载对管道的影响是重点关注内容。通过全尺度预埋单段HDPE波纹管道现场试验,得到管道的振动速度和动应变响应数据,结合LS-DYNA数值模拟软件分别建立了无承插接口管道与含弹性密封圈的承插式HDPE波纹管道;利用现场试验数据验证了无承插口管道模型参数的可靠性,并对比分析了承插式管道的结构位移、振动速度、有效应力的响应规律与失效机制;结合现行规范,根据管道响应规律与接口允许旋转角度计算得到了承插式管道的安全振动速度。研究结果表明:有承插口管道的合振速、合位移和有效应力大于无承插口管道;在同一截面上,有承插口管道迎爆侧的合振速和有效应力更大,而最大合位移出现在截面的背爆侧;管道合位移与合振速在轴线中心处截面最大,并向两端不断减小,有承插口管道中心合位移更大;通过接口允许旋转角度得到此类工况条件下的承插式管道的安全振速为24.77 cm/s。
  • 图  1  试验背景与管道尺寸

    Figure  1.  Test background and pipe dimensions

    图  2  动应变测点与振动速度测点

    Figure  2.  Dynamic strain and vibration velocity measuring points

    图  3  现场试验工况参数及炮孔布置

    Figure  3.  Field test condition parameters and layout of blastholes

    图  4  整体模型及网格划分

    Figure  4.  Overall model and grid division

    图  5  数值模拟与现场试验峰值合振速的对比

    Figure  5.  Comparison of peak resultant vibration velocities between numerical simulation and field test

    图  6  沿管道轴线峰值合振速

    Figure  6.  Peak resultant vibration velocities along the pipeline axis

    图  7  同一截面管道峰值合振速

    Figure  7.  Comparison of peak resultant vibration velocities at the same section of different pipelines

    图  8  同一截面管道峰值有效应力

    Figure  8.  Comparison of peak effective stresses at the same section of different pipelines

    图  9  同一截面管道峰值合位移

    Figure  9.  Comparison of peak resultant displacements at the same section of different pipelines

    图  10  沿管道轴线峰值合位移

    Figure  10.  Peak resultant displacement along the pipeline axis

    图  11  承插管道相对位移

    Figure  11.  Relative displacement of socket pipeline

    图  12  管道旋转角度示意图

    Figure  12.  Diagram of the rotation angle of the pipeline

    图  13  数据拟合

    Figure  13.  Data fitting

    图  14  推导公式逻辑关系

    Figure  14.  Logical relation of formula deduction

    表  1  预埋管道力学参数

    Table  1.   Mechanical parameters of buried pipeline

    材料弹性模量/MPa密度/(g·cm−3)环刚度/(kN·m−2)极限强度/MPa泊松比
    HDPE834.90.936831.60.46
    下载: 导出CSV

    表  2  管道、橡胶、粉质黏土与砂岩材料模型参数

    Table  2.   Parameters of pipeline, rubber, silty clay and sandstone material models

    材料密度/(g·cm−3)弹性模量/GPa剪切模量/GPa泊松比黏聚力/MPa内摩擦角/(°)抗拉强度/MPa
    管道0.9360.834 90.4631.6
    粉质黏土1.9800.039 4.30.350.035150.028
    砂岩2.6805211.20.255.5 432.58
    橡胶1.2000.49
    下载: 导出CSV

    表  3  炸药参数

    Table  3.   Parameters of the explosive

    材料ρ/(g·cm−3)A/GPaB/GPaR1R2ωE0/GPaV
    炸药1.2521418.24.20.90.154.191
    下载: 导出CSV
  • [1] VIPULANANDAN C, LIU J. Sewer pipe-joint infiltration test protocol developed by CIGMAT [C] // Pipeline Division Specialty Conference 2005. Houston, USA: ASCE, 2005: 553–563.
    [2] BALKAYA M, MOORE I D. Analysis of a gasketed polyvinyl chloride pipe joint [J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2131(1): 113–122. DOI: 10.3141/2131-11.
    [3] GIANNAROS E, KOTZAKOLIOS T, KOSTOPOULOS V. Blast response of composite pipeline structure using finite element techniques [J]. Journal of Composite Materials, 2016, 50(25): 3459–3476. DOI: 10.1177/0021998315618768.
    [4] ZHANG J, ZHANG L, LIANG Z. Buckling failure of a buried pipeline subjected to ground explosions [J]. Process Safety and Environmental Protection, 2018, 114: 36–47. DOI: 10.1016/j.psep.2017.11.017.
    [5] PARVIZ M, AMINNEJAD B, FIOUZ A. Numerical simulation of dynamic response of water in buried pipeline under explosion [J]. KSCE Journal of Civil Engineering, 2017, 21(7): 2798–2806. DOI: 10.1007/s12205-017-0889-y.
    [6] TANG Q C, JIANG N, YAO Y K, et al. Experimental investigation on response characteristics of buried pipelines under surface explosion load [J]. International Journal of Pressure Vessels and Piping, 2020, 183: 104101. DOI: 10.1016/j.ijpvp.2020.104101.
    [7] GUAN X M, WANG X C, ZHU Z, et al. Ground vibration test and dynamic response of horseshoe-shaped pipeline during tunnel blasting excavation in pebbly sandy soil [J]. Geotechnical and Geological Engineering, 2020, 38(4): 3725–3736. DOI: 10.1007/s10706-020-01249-x.
    [8] JIANG N, GAO T, ZHOU C B, et al. Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel [J]. Tunnelling and Underground Space Technology, 2018, 81: 590–601. DOI: 10.1016/j.tust.2018.08.022.
    [9] JIANG N, ZHU B, HE X, et al. Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation [J]. Tunnelling and Underground Space Technology, 2020, 102: 103448. DOI: 10.1016/j.tust.2020.103448.
    [10] WU T Y, JIANG N, ZHOU C B, et al. Evaluate of anti-explosion for high-pressure gas steel pipeline subjected to ground explosion [J]. Journal of Constructional Steel Research, 2021, 177: 106429. DOI: 10.1016/j.jcsr.2020.106429.
    [11] 王海涛, 金慧, 贾金青, 等. 地铁隧道钻爆法施工对邻近埋地管道影响的模型试验研究 [J]. 岩石力学与工程学报, 2018, 37(Suppl 1): 3332–3339. DOI: 10.13722/j.cnki.jrme.2016.1409.

    WANG H T, JIN H, JIA J Q, et al. Model test study on the influence of subway tunnel drilling and blasting construction on adjacent buried pipelines [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Suppl 1): 3332–3339. DOI: 10.13722/j.cnki.jrme.2016.1409.
    [12] ZHANG L, LIANG Z, ZHANG J. Mechanical response of a buried pipeline to explosion loading [J]. Journal of Failure Analysis and Prevention, 2016, 16(4): 576–582. DOI: 10.1007/s11668-016-0121-2.
    [13] BALKAYA M, MOORE I D, SAĞLAMER A. Study of non-uniform bedding support under continuous PVC water distribution pipes [J]. Tunnelling and Underground Space Technology, 2013, 35: 99–108. DOI: 10.1016/j.tust.2012.12.005.
    [14] CHAALLAL O, AROCKIASAMY M, GODAT A. Field test performance of buried flexible pipes under live truck loads [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): 04014124. DOI: 10.1061/(ASCE)CF.1943-5509.0000624.
    [15] 贾永胜, 钟冬望, 姚颖康, 等. 基坑爆破预留层对围护桩的保护作用数值分析 [J]. 工程爆破, 2017, 23(5): 1–4, 21. DOI: 10.3969/j.issn.1006-7051.2017.05.001.

    JIA Y S, ZHONG D W, YAO Y K, et al. Numerical calculation of the barrier effect of the pre-protective layer on bored piles in deep foundation pit blasting [J]. Engineering Blasting, 2017, 23(5): 1–4, 21. DOI: 10.3969/j.issn.1006-7051.2017.05.001.
    [16] 张震, 周传波, 路世伟, 等. 超浅埋地铁站通道爆破暗挖地表振动传播特征 [J]. 中南大学学报(自然科学版), 2017, 48(8): 2119–2125. DOI: 10.11817/j.issn.1672-7207.2017.08.020.

    ZHANG Z, ZHOU C B, LU S W, et al. Propagation characteristics of ground vibration induced by subsurface blasting excavation in an ultra-shallow buried underpass [J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2119–2125. DOI: 10.11817/j.issn.1672-7207.2017.08.020.
    [17] 武卫星, 郭晓刚, 朱敏. 武汉轨道交通广虎区间隧道爆破施工方案优化 [J]. 人民长江, 2010, 41(10): 30–33. DOI: 10.16232/j.cnki.1001-4179.2010.10.009.

    WU W X, GUO X G, ZHU M. Optimization of blasting construction scheme of Guang-Hu section subway tunnels in Wuhan [J]. Yangtze River, 2010, 41(10): 30–33. DOI: 10.16232/j.cnki.1001-4179.2010.10.009.
    [18] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 给水排水管道工程施工及验收规范: GB 50268—2008 [S]. 北京: 中国建筑工业出版社, 2008.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for construction and acceptance ofwater and sewerage pipeline works: GB 50268—2008 [S]. Beijing, China: China Architecture & Building Press, 2008.
    [19] 张玉琦, 蒋楠, 贾永胜, 等. 爆破地震荷载作用下高密度聚乙烯波纹管动力响应试验研究 [J]. 爆炸与冲击, 2020, 40(9): 095901. DOI: 10.11883/bzycj-2019-0399.

    ZHANG Y Q, JIANG N, JIA Y S, et al. Experimental study on dynamic response of high-density polyethylene bellows under blasting seismic load [J]. Explosion and Shock Waves, 2020, 40(9): 095901. DOI: 10.11883/bzycj-2019-0399.
    [20] ZHU B, JIANG N, ZHOU C B, et al. Dynamic failure behavior of buried cast iron gas pipeline with local external corrosion subjected to blasting vibration [J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103803. DOI: 10.1016/j.jngse.2021.103803.
    [21] HALLQUIST J. LS-DYNA keyword user’s manual R8.0 [Z]. California, USA: Livermore Software Technology Corporation, 2015.
    [22] 中华人民共和国建设部. 室外给水排水和燃气热力工程抗震设计规范: GB 50032—2003 [S]. 北京: 中国标准出版社, 2003.

    Ministry of Construction of the People’s Republic of China. Code for seismic design of outdoor water supply sewerage gas and heating engineering: GB 50032—2003 [S]. Beijing, China: Standards Press of China, 2003.
    [23] 贵州省住房和城乡建设厅. 室外埋地聚乙烯(PE)给水管道工程技术规程: DBJ52T 039—2017 [S]. 贵阳: 贵州省住房和城乡建设厅, 2017.

    Guizhou Provincial Department of Housing and Urban Rural Development. Technical code of buried polyethylene pipeline for water supply engineering: DBJ52T 039—2017 [S]. Guiyang, China: Guizhou Provincial Department of Housing and Urban Rural Development, 2017.
    [24] QIN X G, NI P P. Kinematics of bell-spigot joints in vitrified clay pipelines under differential ground movement [J]. Tunnelling and Underground Space Technology, 2019, 91: 103005. DOI: 10.1016/j.tust.2019.103005.
    [25] ZHAI K J, ZHANG C B, FANG H Y, et al. Mechanical responses of bell-and-spigot joints in buried prestressed concrete cylinder pipe under coupled service and surcharge loads [J]. Structural Concrete, 2021, 22(2): 827–844. DOI: 10.1002/suco.201900568.
    [26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722—2014 [S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Safety regulations for blasting: GB 6722—2014 [S]. Beijing, China: Standards Press of China, 2015.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  61
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 录用日期:  2022-11-10
  • 修回日期:  2022-01-04
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回