回转体头部通气入水流场演化与载荷特性数值预报研究

王世晟 鲍文春 韩敬永 孙铁志 张桂勇

王世晟, 鲍文春, 韩敬永, 孙铁志, 张桂勇. 回转体头部通气入水流场演化与载荷特性数值预报研究[J]. 爆炸与冲击, 2022, 42(5): 053201. doi: 10.11883/bzycj-2021-0494
引用本文: 王世晟, 鲍文春, 韩敬永, 孙铁志, 张桂勇. 回转体头部通气入水流场演化与载荷特性数值预报研究[J]. 爆炸与冲击, 2022, 42(5): 053201. doi: 10.11883/bzycj-2021-0494
WANG Shisheng, BAO Wenchun, HAN Jingyong, SUN Tiezhi, ZHANG Guiyong. Numerical study on the flow field and load characteristics of a head-ventilated revolving body during water entry[J]. Explosion And Shock Waves, 2022, 42(5): 053201. doi: 10.11883/bzycj-2021-0494
Citation: WANG Shisheng, BAO Wenchun, HAN Jingyong, SUN Tiezhi, ZHANG Guiyong. Numerical study on the flow field and load characteristics of a head-ventilated revolving body during water entry[J]. Explosion And Shock Waves, 2022, 42(5): 053201. doi: 10.11883/bzycj-2021-0494

回转体头部通气入水流场演化与载荷特性数值预报研究

doi: 10.11883/bzycj-2021-0494
基金项目: 国家自然科学基金(52071062);辽宁省自然科学基金(2020MS106);中央高校基本科研业务费专项资金(DUT21LK25, DUT20TD108, DUT20LAB308);辽宁省兴辽英才计划(XLYC1908027)
详细信息
    作者简介:

    王世晟(1998- ),男,硕士研究生,wss980317@163.com

    通讯作者:

    孙铁志(1986- ),男,博士,副教授,suntiezhi@dlut.edu.cn

  • 中图分类号: O351.2

Numerical study on the flow field and load characteristics of a head-ventilated revolving body during water entry

  • 摘要: 为探究周向通气对回转体入水表面载荷的影响,基于VOF(volume of fluid)模型和Realizable k-ε两层湍流模型,开展了周向通气回转体低速入水流场演化数值预报和表面载荷特性分析。通过将数值预报的空泡形态与试验结果相对比,验证了所采用的数值方法的有效性,并分析了不同通气率对空泡形态、流场特性和表面载荷特性的影响。结果表明,通气会改变回转体入水空泡演化过程以及侧壁表面压力,在通气作用下空泡第一次脱落时间延缓,并且通气气体流向空化器后方负压区,改善了空化器后方的负压情况;其次,通气气体在通气口附近形成了明显的涡结构,之后与壁面处由空化器形成的涡融合,增强了空泡中部的涡流强度;最后,通气率越大,空泡闭合时间越晚,空泡体积越大,尾部空泡越不容易发生脱落,同时通气会减缓回转体表面的压力波动,通气率越大压力波动越小。综合分析可以认为,侧向通气对于回转体低速入水流场及表面载荷特性有一定的改善作用。
  • 图  1  回转体模型及尺寸

    Figure  1.  Revolving body model and dimensions

    图  2  计算域及网格设置

    Figure  2.  Computing domains and settings of mesh

    图  3  数值模拟得到的空泡形态与试验结果的对比

    Figure  3.  Comparison of cavity shape between numerical simulation and experiment

    图  4  CQS=0和CQS=0.5条件下空泡形态

    Figure  4.  Cavity shapes at CQS=0 and CQS=0.5

    图  5  t=10~40 ms时回转体侧壁表面相对压力

    Figure  5.  Relative pressure of revolving body at t=10~40 ms

    图  6  t=20~50 ms中截面速度场

    Figure  6.  Velocity field at t=20~50 ms

    图  7  t=20~50 ms时刻中截面Q

    Figure  7.  Value of Q at t=20~50 ms

    图  8  不同通气率下各相的分布

    Figure  8.  Phase distributions at different ventilation rates

    图  9  监测点P1、P2在不同通气率条件下的压力时间曲线

    Figure  9.  Pressure-time curves at point P1 and P2 at different ventilation rates

    表  1  空泡最大直径及长度

    Table  1.   Maximum diameter and length of cavity

    时间/ms空泡最大直径/mm空泡长度/mm
    CQS=0CQS=0.5CQS=0CQS=0.5
    1051.252.0 78.5 79.0
    2046.856.8102.3115.8
    3044.749.6129.0147.7
    4043.048.0130.0176.9
    5043.148.0118.3177.1
    6043.048.0121.3184.2
    下载: 导出CSV
  • [1] 张岳青, 蔡卫军, 李建辰. 鱼雷斜入水过程非定常运动仿真研究 [J]. 船舶力学, 2019, 23(1): 20–28. DOI: 10.3969/j.issn.1007-7294.2019.01.003.

    ZHANG Y Q, CAI W J, LI J C. Study of unsteady motion simulation for the torpedo oblique water entry problem [J]. Journal of Ship Mechanics, 2019, 23(1): 20–28. DOI: 10.3969/j.issn.1007-7294.2019.01.003.
    [2] SHI Y, GAO X F, PAN G. Experimental and numerical investigation of the frequency-domain characteristics of impact load for AUV during water entry [J]. Ocean Engineering, 2020, 202: 107203. DOI: 10.1016/j.oceaneng.2020.107203.
    [3] 杨晓彬, 许国冬. 基于重叠网格法的飞机水上降落水动力砰击载荷研究 [J]. 振动与冲击, 2020, 39(2): 57–63. DOI: 10.13465/j.cnki.jvs.2020.02.009.

    YANG X B, XU G D. Identification of hydrodynamic impact loads during the airplane ditching based on overset grid method [J]. Journal of Vibration and Shock, 2020, 39(2): 57–63. DOI: 10.13465/j.cnki.jvs.2020.02.009.
    [4] 秦洪德, 赵林岳, 申静. 入水冲击问题综述 [J]. 哈尔滨工业大学学报, 2011, 43(S1): 152–157.

    QIN H D, ZHAO L Y, SHEN J. Review of water entry problem [J]. Journal of Harbin Institute of Technology, 2011, 43(S1): 152–157.
    [5] WORTHINGTON A M. On impact with a liquid surface [J]. Proceedings of the Royal Society of London, 1883, 34(220/221/222/223): 217–230. DOI: 10.1098/rspl.1882.0035.
    [6] VON KARMAN T. The impact on seaplane floats during landing: NACA-TN-321[R]. Washington: NACA, 1929.
    [7] 陈学农, 何友声. 平头物体三维带空泡入水的数值模拟 [J]. 力学学报, 1990, 22(2): 129–138.

    CHEN X N, HE Y S. Numerical simulation of 3-D water entry of blunt cylinder with a ventilatedcavity [J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 129–138.
    [8] ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies [J]. Journal of Fluid Mechanics, 1993, 246: 593–612. DOI: 10.1017/S002211209300028X.
    [9] 王永虎, 魏照宇. 楔形体入水时域解的复边界元数值分析 [J]. 爆炸与冲击, 2012, 32(1): 55–60. DOI: 10.11883/1001-1455(2012)01-0055-06.

    WANG Y H, WEI Z Y. Numerical analysis for water entry of wedges based on a complex variable boundary element method [J]. Explosion and Shock Waves, 2012, 32(1): 55–60. DOI: 10.11883/1001-1455(2012)01-0055-06.
    [10] 马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟 [J]. 哈尔滨工业大学学报, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.

    MA Q P, WEI Y J, WANG C, et al. Numerical simulation of high-speed water entry cavity of cylinders [J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.
    [11] 宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟 [J]. 北京理工大学学报, 2017, 37(7): 661–666. DOI: 10.15918/j.tbit1001-0645.2017.07.001.

    SONG W C, WANG C, WEI Y J, et al. Numerical simulation of the flow field characteristics of low speed oblique water entry of revolution body [J]. Transactions of Beijing Institute of Technology, 2017, 37(7): 661–666. DOI: 10.15918/j.tbit1001-0645.2017.07.001.
    [12] HOU Z, SUN T Z, QUAN X B, et al. Large eddy simulation and experimental investigation on the cavity dynamics and vortex evolution for oblique water entry of a cylinder [J]. Applied Ocean Research, 2018, 81: 76–92. DOI: 10.1016/j.apor.2018.10.008.
    [13] 张佳悦, 李达钦, 吴钦, 等. 航行体回收垂直入水空泡流场及水动力特性研究 [J]. 力学学报, 2019, 51(3): 803–812. DOI: 10.6052/0459-1879-18-364.

    ZHANG J Y, LI D Q, WU Q, et al. Numerical investigation on cavity structures and hyrodynamics of the vehicle during vertical water-entry [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 803–812. DOI: 10.6052/0459-1879-18-364.
    [14] SONG Z J, DUAN W Y, XU G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed [J]. Ocean Engineering, 2020, 211: 107574. DOI: 10.1016/j.oceaneng.2020.107574.
    [15] 魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究 [J]. 爆炸与冲击, 2021, 41(10): 112–123. DOI: 10.11883/bzycj-2020-0461.

    WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 112–123. DOI: 10.11883/bzycj-2020-0461.
    [16] ZHENG K Y, ZHAO X Z, YAN D M. Numerical simulation of water entry of two-dimensional structures with complex geometry using a CIP-based model [J]. Applied Ocean Research, 2021, 106: 102379. DOI: 10.1016/j.apor.2020.102379.
    [17] HOWARD E A. Protective nose cap for torpedoes: US2889772 [P]. 1959-06-09.
    [18] LI Y, ZONG Z, SUN T Z. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity [J]. Composite Structures, 2021, 255: 112883. DOI: 10.1016/j.compstruct.2020.112883.
    [19] SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760. DOI: 10.1016/j.jfluidstructs.2019.102760.
    [20] CHUANG S L. Experiments on flat-bottom slamming [J]. Journal of Ship Research, 1966, 10(1): 10–17. DOI: 10.5957/jsr.1966.10.1.10.
    [21] 陈震, 肖熙. 空气垫在平底结构入水砰击中作用的仿真分析 [J]. 上海交通大学学报, 2005, 39(5): 670–673. DOI: 10.3321/j.issn:1006-2467.2005.05.002.

    CHEN Z, XIAO X. Simulation analysis on the role of air cushion in the slamming of a flat-bottom structure [J]. Journal of Shanghai Jiaotong University, 2005, 39(5): 670–673. DOI: 10.3321/j.issn:1006-2467.2005.05.002.
    [22] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究 [J]. 工程热物理学报, 2015, 36(8): 1691–1695.

    PAN L, WANG H R, YAO E R, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder [J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691–1695.
    [23] 刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟 [J]. 工程热物理学报, 2019, 40(2): 300–305.

    LIU H P, YU F P, HAN B, et al. Numerical simulation study on influence of top jet in object water entering impact [J]. Journal of Engineering Thermophysics, 2019, 40(2): 300–305.
    [24] JIANG Y H, BAI T, GAO Y, et al. Water entry of a constraint posture body under different entry angles and ventilation rates [J]. Ocean Engineering, 2018, 153: 53–59. DOI: 10.1016/j.oceaneng.2018.01.091.
    [25] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析 [J]. 西北工业大学学报, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.

    ZHAO H R, SHI Y, PAN G. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle [J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
    [26] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows [J]. Computers & Fluids, 1995, 24(3): 227–238. DOI: 10.1016/0045-7930(94)00032-T.
    [27] RODI W. Experience with two-layer models combining the k-ε model with a one-equation model near the wall [C] // 29th Aerospace Sciences Meeting. Reno, USA: AIAA, 1991: 216. DOI: 10.2514/6.1991-216.
    [28] HALLER G. An objective definition of a vortex [J]. Journal of Fluid Mechanics, 2005, 525: 1–26. DOI: 10.1017/S0022112004002526.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  166
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 修回日期:  2022-01-25
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回