爆炸载荷作用下混凝土靶板动态响应的细观模拟

徐柳云 张元迪

徐柳云, 张元迪. 爆炸载荷作用下混凝土靶板动态响应的细观模拟[J]. 爆炸与冲击, 2022, 42(12): 123102. doi: 10.11883/bzycj-2022-0214
引用本文: 徐柳云, 张元迪. 爆炸载荷作用下混凝土靶板动态响应的细观模拟[J]. 爆炸与冲击, 2022, 42(12): 123102. doi: 10.11883/bzycj-2022-0214
XU Liuyun, ZHANG Yuandi. Mesoscale numerical simulation on dynamical response of concrete slabs to explosion loading[J]. Explosion And Shock Waves, 2022, 42(12): 123102. doi: 10.11883/bzycj-2022-0214
Citation: XU Liuyun, ZHANG Yuandi. Mesoscale numerical simulation on dynamical response of concrete slabs to explosion loading[J]. Explosion And Shock Waves, 2022, 42(12): 123102. doi: 10.11883/bzycj-2022-0214

爆炸载荷作用下混凝土靶板动态响应的细观模拟

doi: 10.11883/bzycj-2022-0214
详细信息
    作者简介:

    徐柳云(1994- ),女,博士,工程师,xuliuliu@mail.ustc.edu.cn

  • 中图分类号: O383

Mesoscale numerical simulation on dynamical response of concrete slabs to explosion loading

  • 摘要: 考虑到一些对裂纹要求较严格的混凝土结构可能遭受到冲击载荷的威胁,利用混凝土三维细观力学模型对混凝土板在炸药爆炸(接触爆炸、封闭爆炸)载荷作用下的响应和破坏情况进行数值模拟,并就影响靶板内裂纹扩展结果的因素展开参数讨论。模型考虑了混凝土材料的内部细观结构(包括粗骨料体积分数、尺寸、级配等)以及三相材料力学性能的影响,准确地预测了混凝土板在2种爆炸条件下的裂纹形貌和开坑尺寸。通过与宏观均质模型的模拟结果进行对比可知,细观模型预测的接触爆炸条件下混凝土靶板的开坑形态、尺寸,以及封闭爆炸条件下混凝土盖板的主裂纹数量,均与实验观察更为贴近。此外,参数研究结果表明,三维细观力学模型的全局网格尺寸以及模型内各组分的相对网格尺寸均会对模拟结果的精度产生影响,选择与空气网格尺寸相当的混凝土网格尺寸,可以在获得较准确模拟结果的同时保证计算效率;骨料粒径大小也会影响混凝土板在爆炸载荷作用下的响应和破坏结果。混凝土三维细观力学模型能够反映混凝土结构在冲击载荷作用下的损伤和破坏的细观机理及影响因素,对指导工程设计和结构安全评估具有重要的理论意义和实际应用价值。
  • 图  1  混凝土细观力学模型

    Figure  1.  The meso-mechanical model for concrete

    图  2  混凝土三相球模型

    Figure  2.  The three-phase sphere model for concrete

    图  3  压缩强度为 47.2 MPa的混凝土靶板1/4有限元模型(未显示空气网格)

    Figure  3.  A one-fourth finite element model of the concrete slab with the compressive strength of 47.2 MPa (without air mesh )

    图  4  接触爆炸作用下混凝土靶板破坏形貌的模拟结果与实验照片对比

    Figure  4.  Comparison of the numerically predicted cross-sectional views of the final crack patterns with the experimental observations in the concrete slab subjected to contact explosion

    图  5  不同网格尺寸模型预测的混凝土靶板在接触爆炸作用下的破坏形貌与实验结果[18]的比较

    Figure  5.  Comparison of the numerically-predicted cross-sectional views of the final crack patterns by the meso-mechanical models with different mesh sizes with the experimental observations[18] in the concrete slab subjected to contact explosion

    图  6  不同相对网格尺寸模型预测的混凝土靶板在接触爆炸作用下的破坏形貌

    Figure  6.  Comparison of the numerically predicted cross-sectional views of the final crack patterns by the meso-mechanical models with different relative mesh sizes

    图  7  压缩强度为35 MPa的钢筋混凝土靶板及封闭容器1/4有限元模型(未显示空气网格)

    Figure  7.  A one-fourth finite element model for the reinforced concrete slab with the compressive strength of 35 MPa and the closed container (without air mesh)

    图  8  封闭爆炸作用下钢筋混凝土盖板破坏形貌的模拟结果与实验照片对比

    Figure  8.  Comparison of the numerically predicted final crack patterns with the experimental observations on the upper surface of the reinforced concrete slab subjected to closed explosion

    图  9  不同网格尺寸模型预测的钢筋混凝土盖板在封闭爆炸作用下的破坏形貌

    Figure  9.  Comparison of the numerically predicted final crack patterns on the upper surface of the reinforced concrete slab by the meso-mechanical models with different mesh sizes

    图  10  不同相对网格尺寸模型预测的钢筋混凝土盖板的破坏形貌

    Figure  10.  Comparison of the numerically predicted final crack patterns on the upper surface of the reinforced concrete slab by the meso-mechanical models with different relative mesh sizes

    图  11  不同骨料粒径范围的钢筋混凝土靶板在封闭爆炸作用下的破坏形貌

    Figure  11.  Comparison of the numerically predicted final crack patterns on the upper surface of the reinforced concrete slab by the meso-mechanical models with different aggregate sizes

    表  1  砂浆基体、ITZ层及粗骨料材料参数

    Table  1.   Values of various parameters for mortar matrix, ITZ layer and coarse aggregate

    材料${\rho _0}$/(kg·m−3)${\rho _{{\text{s}}0}}$/(kg·m−3)${p_{{\text{crush}}}}$/MPa${p_{{\text{lock}}}}$/GPaK1/GPaK2/GPaK3/GPa
    砂浆基体2290268010.2314 30 10
    ITZ层18002680 6.1312.6 30 10
    粗骨料2660268029.3319.1−3000150000
    材料nG/GPa${f'_{\text{c}}}$/MPa${f_{\text{t}}}$/MPaBN
    砂浆基体310.530.73.071.430.58
    ITZ层3 5.818.41.841.430.58
    粗骨料316.288 8.8 1.950.76
    下载: 导出CSV

    表  2  砂浆基体、ITZ层、粗骨料及混凝土材料参数

    Table  2.   Material parameters for mortar matrix, ITZ layer, coarse aggregate and concrete

    材料${\rho _0}$/(kg·m−3)${\rho _{{\text{s}}0}}$/(kg·m−3)${p_{{\text{crush}}}}$/MPa${p_{{\text{lock}}}}$/GPaK1/GPaK2/GPaK3/GPa
    砂浆基体20702680 6.1311.7 30 10
    ITZ层18002680 3.6310.5 30 10
    粗骨料2660268029.3319.1−3000150000
    凝凝土2314268011.7316.7 30 10
    材料nG/GPa${f'_{\text{c}}}$/MPa${f_{\text{t}}}$/MPaBN
    砂浆基体3 8.718.21.821.820.51
    ITZ层3 4.810.91.091.820.51
    粗骨料316.288 8.8 1.950.76
    凝凝土311 35 3.2 1.820.51
    下载: 导出CSV
  • [1] 吴东旭, 姚勇, 刘筱玲, 等. 离散元法侵彻混凝土靶板数值模拟研究 [J]. 重庆理工大学学报(自然科学版), 2013, 27(9): 64–67. DOI: 10.3969/j.issn.1674-8425(z).2013.09.015.

    WU D X, YAO Y, LIU X L, et al. Concrete penetration simulation with discrete element method based on the micromechanics [J]. Journal of Chongqing University of Technology (Natural Science), 2013, 27(9): 64–67. DOI: 10.3969/j.issn.1674-8425(z).2013.09.015.
    [2] 吴成, 沈晓军, 王晓鸣, 等. 细观混凝土靶抗侵彻数值模拟及侵彻深度模型 [J]. 爆炸与冲击, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.

    WU C, SHEN X J, WANG X M, et al. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target [J]. Explosion and Shock Waves, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.
    [3] 彭永, 卢芳云, 方秦, 等. 弹体侵彻混凝土靶体的尺寸效应分析 [J]. 爆炸与冲击, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.

    PENG Y, LU F Y, FANG Q, et al. Analyses of the size effect for projectile penetrations into concrete targets [J]. Explosion and Shock Waves, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.
    [4] ZHANG J, CHEN W S, HAO H, et al. Performance of concrete targets mixed with coarse aggregates against rigid projectile impact [J]. International Journal of Impact Engineering, 2020, 141: 103565. DOI: 10.1016/j.ijimpeng.2020.103565.
    [5] WU Z J, ZHANG P L, FAN L F, et al. Debris characteristics and scattering pattern analysis of reinforced concrete slabs subjected to internal blast loads: a numerical study [J]. International Journal of Impact Engineering, 2019, 131: 1–16. DOI: 10.1016/j.ijimpeng.2019.04.024.
    [6] 张凤国, 刘军, 楼建锋, 等. 骨料对混凝土爆炸毁伤效应影响的数值分析 [J]. 防护工程, 2012, 34(5): 30–33.

    ZHANG F G, LIU J, LOU J F, et al. Numerical analysis of the influence of aggregate on the damage of concrete under blast loading [J]. Protective Engineering, 2012, 34(5): 30–33.
    [7] 孙加超. 基于细观模型爆炸荷载下钢筋混凝土板动力响应研究 [D]. 四川绵阳: 西南科技大学, 2019.

    SUN J C. Study on dynamic response of reinforced concrete slab based on meso-model under explosive load [D]. Mianyang, Sichuan, China: Southwest University of Science and Technology, 2019.
    [8] XU P B, XU H, WEN H M. 3D meso-mechanical modeling of concrete spall tests [J]. International Journal of Impact Engineering, 2016, 97: 46–56. DOI: 10.1016/j.ijimpeng.2016.06.005.
    [9] 徐沛保. 混凝土3D细观力学模型研究及其应用 [D]. 合肥: 中国科学技术大学, 2016.

    XU P B. A study and application of the 3D meso-mechanical model for concrete [D]. Hefei, Anhui, China: University of Science and Technology of China, 2016.
    [10] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
    [11] 徐浩. 混凝土动态计算本构新模型 [D]. 合肥: 中国科学技术大学, 2013.

    XU H. A new computational constitutive model for concrete subjected to dynamic loadings [D]. Hefei, Anhui, China: University of Science and Technology of China, 2013.
    [12] HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. DOI: 10.1063/1.1658021.
    [13] LUTZ M P, MONTEIRO P J M, ZIMMERMAN R W. Inhomogeneous interfacial transition zone model for the bulk modulus of mortar [J]. Cement and Concrete Research, 1997, 27(7): 1113–1122. DOI: 10.1016/S0008-8846(97)00086-0.
    [14] SCRIVENER K L, NEMATI K M. The percolation of pore space in the cement paste/aggregate interfacial zone of concrete [J]. Cement and Concrete Research, 1996, 26(1): 35–40. DOI: 10.1016/0008-8846(95)00185-9.
    [15] DEMIR F. Prediction of elastic modulus of normal and high strength concrete by artificial neural networks [J]. Construction and Building Materials, 2008, 22(7): 1428–1435. DOI: 10.1016/j.conbuildmat.2007.04.004.
    [16] ACI Committee 318. Building code requirements for structural concrete and commentary: ACI 318-08 [R]. Farmington Hills, Michigan, USA: American Concrete Institute, 2008.
    [17] FIB/CEB. State of the art report: high strength concrete [R]. Lausanne, Switzerland: FIB, 1990.
    [18] HARTMANN T, PIETZSCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of Protective Structures, 2010, 1(4): 443–468. DOI: 10.1260/2041-4196.1.4.443.
    [19] Federal Emergency Management Agency. Reference manual to mitigate potential terrorist attacks against buildings: FEMA 426 [R]. Washington, USA: Federal Emergency Management Agency, 2003.
    [20] AUTODYN. Theory manual [Z]. Horsham, England: Century Dynamic Ltd., 1997.
    [21] 徐浩, 徐柳云, 文鹤鸣. 混凝土类材料宏观动态本构模型及其应用 [C]//方秦. 冲击爆炸效应与工程防护研究新进展: 庆贺钱七虎院士八十寿辰. 北京: 科学出版社, 2017.
    [22] TAI Y S, CHU T L, HU H T, et al. Dynamic response of a reinforced concrete slab subjected to air blast load [J]. Theoretical and Applied Fracture Mechanics, 2011, 56(3): 140–147. DOI: 10.1016/j.tafmec.2011.11.002.
    [23] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  139
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-09-23
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回