一种新型危险品仓库结构设计及其安全距离

刘明君 李展 谢伟 尹青 曾丹 张亚栋 周亭

刘明君, 李展, 谢伟, 尹青, 曾丹, 张亚栋, 周亭. 一种新型危险品仓库结构设计及其安全距离[J]. 爆炸与冲击, 2023, 43(4): 045901. doi: 10.11883/bzycj-2022-0224
引用本文: 刘明君, 李展, 谢伟, 尹青, 曾丹, 张亚栋, 周亭. 一种新型危险品仓库结构设计及其安全距离[J]. 爆炸与冲击, 2023, 43(4): 045901. doi: 10.11883/bzycj-2022-0224
LIU Mingjun, LI Zhan, XIE Wei, YIN Qing, ZENG Dan, ZHANG Yadong, ZHOU Ting. A novel hazard warehouse and its safety separation distance[J]. Explosion And Shock Waves, 2023, 43(4): 045901. doi: 10.11883/bzycj-2022-0224
Citation: LIU Mingjun, LI Zhan, XIE Wei, YIN Qing, ZENG Dan, ZHANG Yadong, ZHOU Ting. A novel hazard warehouse and its safety separation distance[J]. Explosion And Shock Waves, 2023, 43(4): 045901. doi: 10.11883/bzycj-2022-0224

一种新型危险品仓库结构设计及其安全距离

doi: 10.11883/bzycj-2022-0224
详细信息
    作者简介:

    刘明君(1995- ),男,硕士研究生,982366436@qq.com

    通讯作者:

    谢 伟(1973- ),男,硕士,高级工程师,tougao0906@163.com

  • 中图分类号: O382;TU375

A novel hazard warehouse and its safety separation distance

  • 摘要: 安全距离是危险品仓库建设和研究中重点关注的问题之一。为减小危险品仓库的安全距离,结合现行规范和危险品仓库建设现状,针对一种由浅埋式库房主体、顶部堆土和钢筋混凝土分配板组成的新型危险品仓库形式开展了3组缩尺模型野外爆炸试验,记录了各组试验的爆炸过程,统计了冲击波超压峰值和爆炸破片的飞散范围,给出了爆炸冲击波的安全距离,分析了分配板、库房强度等因素对冲击波传播和破片飞散的影响。研究表明,这种新型危险品仓库可实现定向泄爆,有效限制库房两侧及后方爆炸冲击波的传播和爆炸破片的飞散,使库房两侧及后方的安全距离最大减小77%;与覆土库相比,库房后方的安全距离可减小约50%。钢筋混凝土分配板是新型危险品仓库的重要组成部分,同无分配板库房相比,最大可使后方安全距离减小30%。与波纹钢库房主体相比,强度较高的钢筋混凝土库房主体可使库房后方的安全距离最大减小38%。
  • 图  1  新型危险品仓库的结构形式

    Figure  1.  Structure of a novel hazards warehouse

    图  2  试验模型各组成部分

    Figure  2.  Components of test models

    图  3  试验模型及顶部堆土尺寸(单位:m)

    Figure  3.  Size of the test models and heaped-up earth cover (unit: m)

    图  4  试验模型现场照片

    Figure  4.  Photos of the test models

    图  5  试验模型装药情况

    Figure  5.  Charging of test models

    图  6  测点和高速摄像机布置

    Figure  6.  Locations of gauges and high-speed camera

    图  7  冲击波超压传感器

    Figure  7.  Setup of shock wave overpressure sensor

    图  8  各试验模型高速摄像图像

    Figure  8.  High-speed camera photos of the three tests

    图  9  各试验模型超压峰值

    Figure  9.  Peak pressure of the three tests

    图  10  爆炸破片分布图

    Figure  10.  Distribution of explosion debris

    图  11  冲击波超压峰值、地面爆炸经验公式及拟合公式

    Figure  11.  Peak pressures, empirical formula and fitting functions of shock waves

    图  12  各试验模型冲击波超压峰值等值线及对比

    Figure  12.  Isolines and comparison of peak pressures of the test models

    表  1  缩尺试验模型情况

    Table  1.   Cases of scaled test model

    模型库房主体材料分配板装药量/kg
    1波纹钢156
    2波纹钢156
    3钢筋混凝土156
    下载: 导出CSV
  • [1] 国务院事故调查组. 天津港“8·12”特别重大火灾爆炸事故调查报告公布 [J]. 消防界(电子版), 2016(2): 35–40.
    [2] 中国新闻网. 乌克兰赫尔松州发生剧烈爆炸 乌军称打击弹药库 [EB/OL]. (2022-07-12)[2022-07-25]. http://www.chinanews.com.cn/gj/2022/07-12/9801657.shtml.
    [3] 王云波, 刘玉存. 弹药库布局及防护的安全设计 [J]. 机械管理开发, 2007(1): 21–22,24. DOI: 10.16525/j.cnki.cn14-1134/th.2007.01.011.

    WANG Y B, LIU Y C. Safety design of ammunition depot overall arrangement and protection [J]. Mechanical Management and Development, 2007(1): 21–22,24. DOI: 10.16525/j.cnki.cn14-1134/th.2007.01.011.
    [4] US Department of Defense Explosive Safety Board. Manual of DOD ammunition and explosives safety standards [S]. Alexandria, 2008.
    [5] US Headquarters Department of the Army. Ammunition and explosives safety standards: DA PAM 385-64 [S]. Washington: Headquarters Department of the Army, 2011.
    [6] US Department of Defense. Ammunition and explosives storage magazines: UFC 4-420-01 [S]. 2015.
    [7] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB 50154-2009 地下及覆土火药炸药仓库设计安全规范 [S]. 北京: 中国计划出版社, 2009.
    [8] US Naval Facilities Engineering Command. Standard high performance magazine [S]. Norfolk, 2001.
    [9] PARK S, PARK Y J. Effect of underground-type ammunition magazine construction in respect of civil and military coexistence [J]. Sustainability, 2020, 12(21): 9285. DOI: 10.3390/su12219285.
    [10] 云庆. 地下炸药库爆炸地震波传播规律及安全距离的研究 [J]. 长沙矿山研究院季刊, 1985, 5(3): 60. DOI: 10.13827/j.cnki.kyyk.1985.03.014.
    [11] 刘桂英, 周荷英. 炸药库覆盖层厚度与库间距离的研究 [J]. 世界采矿快报, 1988, 4(22): 17–18. DOI: 10.13828/j.cnki.ckjs.1988.22.012.
    [12] SUGIYAMA Y, WAKABAYASHI K, MATSUMURA T, et al. On the azimuth angle characteristics of the blast wave from an underground magazine model (Ⅰ)-experiment with a magazine of small ratio of the length to the inner diameter [J]. Science and Technology of Energetic Materials, 2016, 77(5/6): 136–141.
    [13] SUGIYAMA Y, WAKABAYASHI K, MATSUMURA T, et al. On the azimuth angle characteristics of the blast wave from an underground magazine model (Ⅱ)-numerical simulation of a magazine with a small internal length-to-diameter ratio [J]. Science and Technology of Energetic Materials, 2017, 78(1/2): 49–54.
    [14] SUGIYAMA Y, WAKABAYASHI K, MATSUMURA T, et al. On the azimuth angle characteristics of the blast wave from an underground magazine model (Ⅲ)-experiments on the effect of the internal length-to-diameter ratio [J]. Science and Technology of Energetic Materials, 2017, 78(5/6): 117–123.
    [15] SUGIYAMA Y, WAKABAYASHI K, MATSUMURA T, et al. On the azimuth angle characteristics of the blast waves from an underground magazine model (Ⅳ)-large-scale field experiments [J]. Science and Technology of Energetic Materials, 2018, 79(1/2): 28–33.
    [16] SUGIYAMA Y, WAKABAYASHI K, MATSUMURA T, et al. On the azimuth angle characteristics of the blast wave from an underground magazine model (Ⅴ)-experiments on the effects of length ratio between magazine chambers and passageways [J]. Science and Technology of Energetic Materials, 2019, 80(1/2): 15–22.
    [17] SUGIYAMA Y, WAKABAYASHI K, MATSUMURA T, et al. Numerical study of the effect of high-explosive storage facility shape on the azimuthal distribution of blast-wave pressures [J]. European Journal of Mechanics - B/Fluids, 2020, 79: 153–164. DOI: 10.1016/j.euromechflu.2019.09.008.
    [18] SUGIYAMA Y, WAKABAYASHI K, MATSUMURA T, et al. Numerical estimation of blast wave strength from an underground structure [J]. Science and Technology of Energetic Materials, 2015, 76(1): 14–19.
    [19] WU C Q, HAO H. Numerical prediction of rock mass damage due to accidental explosions in an underground ammunition storage chamber [J]. Shock Waves, 2006, 15(1): 43–54. DOI: 10.1007/s00193-005-0004-z.
    [20] WEALS F H. Tests to determine separation distances of earth-covered magazines [J]. Annals of the New York Academy of Sciences, 1968, 152(1): 853–870. DOI: 10.1111/j.1749-6632.1968.tb12021.x.
    [21] OSWALD C J. Calculation of hazardous soil debris throw distances around earth covered magazines [R]. San Antonio: Southwest Research Institute, 1992.
    [22] 李铮, 王中黔, 王爱凤, 等. 复土爆炸危险品库空气冲击波的传播规律 [J]. 爆炸与冲击, 1986, 6(1): 48–55.

    LI Z, WANG Z Q, WANG A F, et al. The propagation law of air shock wave for overburden explosive storehouse [J]. Explosion and Shock Waves, 1986, 6(1): 48–55.
    [23] KIM D, MATSUMURA T, NAKAYAMA Y. Propagation and attenuation characteristics of blast wave pressure generated from an explosion inside an earth-covered magazine [J]. Science and Technology of Energetic Materials, 2013, 74(3): 100–105.
    [24] 荣凯, 杨军, 董文学, 等. 爆炸荷载作用下覆土库外部冲击波传播规律 [J]. 工程爆破, 2020, 26(3): 1–17, 22. DOI: 10.3969/j.issn.1006-7051.2020.03.001.

    RONG K, YANG J, DONG W X, et al. The law of shock wave propagation outside earth covered magazine under explosion [J]. Engineering Blasting, 2020, 26(3): 1–17, 22. DOI: 10.3969/j.issn.1006-7051.2020.03.001.
    [25] 渡辺萌奈, 大野友則, 別府万寿博, 等. 地上覆土式火薬庫の構造形式等が内部爆発による庫外爆風圧および飛散物の抑制効果に関する実験的研究 [J]. 構造工学論文集A, 2011, 57A: 1124–1133. DOI: 10.11532/structcivil.57A.1124.

    WATANABE M, OHNO T, BEPPU M, et al. An experimental study on the mitigation of peak over pressure and fragments due to internal explosion of Earth Covered Magazines [J]. Journal of Structural Engineering, A, 2011, 57A: 1124–1133. DOI: 10.11532/structcivil.57A.1124.
    [26] TAN Q M. Dimensional analysis: with case studies in mechanics [M]. Berlin Heidelberg: Springer-Verlag, 2011: 110–112.
    [27] 张守中. 爆炸基本原理 [M]. 北京: 国防工业出版社, 1988: 401–402.
    [28] 孙惠香, 许金余, 朱国富, 等. 爆炸荷载作用下围岩与地下结构的动力相互作用 [J]. 爆炸与冲击, 2013, 33(5): 519–524. DOI: 10.11883/1001-1455(2013)05-0519-06.

    SUN H X, XU J Y, ZHU G F, et al. Dynamic interaction between surrounding rock and underground structure subjected to blast loading [J]. Explosion and Shock Waves, 2013, 33(5): 519–524. DOI: 10.11883/1001-1455(2013)05-0519-06.
    [29] 傅智敏, 黄金印, 臧娜. 爆炸冲击波伤害破坏作用定量分析 [J]. 消防科学与技术, 2009, 28(6): 390–395. DOI: 10.3969/j.issn.1009-0029.2009.06.002.

    FU Z M, HUANG J Y, ZANG N. Quantitative analysis for consequence of explosion shock wave [J]. Fire Science and Technology, 2009, 28(6): 390–395. DOI: 10.3969/j.issn.1009-0029.2009.06.002.
    [30] 杨志焕, 王正国, 唐承功, 等. 弱冲击波对人员内脏损伤的危险性估计 [J]. 爆炸与冲击, 1992, 6(1): 83–88.

    YANG Z H, WANG Z G, TANG C G, et al. Critical estimation of the internal organ injury in human being subjected to weak blast waves [J]. Explosion and Shock Waves, 1992, 6(1): 83–88.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  82
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-08-22
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回